Skip to main content

Respiratory Drug Delivery

  • Chapter
  • First Online:
Microsystems for Pharmatechnology

Abstract

The treatment of diseases by respiratory drug delivery offers a noninvasive route to deliver either topically active medications or systemic drugs. Nose and lung are target organs which provide opportunities for aerosol drug delivery by deposition on the right surface. However, filter and clearance mechanisms of the body must be overcome in order to achieve successful applications. Basic mechanisms of deposition and their interplay with the particle size (aerodynamic diameters, approx. 40–80 μm (nose) and 2–5 μm (lung)) and the patient’s inhalation flow profile are discussed. The required particle size motivates the technological approaches for aerosol generation by different inhalers. Among them are nebulizers, dry powder inhalers (DPI), pressurized metered dose inhalers (p-MDI), and non-pressurized metered dose inhalers (np-MDI). Two recently designed examples of non-pressurized liquid inhalers are presented in more detail as they make direct use of microfluidic structures in their nozzle and filter designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdel Salam H (1947) Kitab Zakhirat El Attar (in Arabic). Dar El Ma-aref Press, Cairo, p 24

    Google Scholar 

  2. Boëthius A, Ward-Perkins JB (1970) Etruscan and Roman architecture. Penguin, Harmondsworth

    Google Scholar 

  3. Byron P, Delvadia RR, Longest PW, Hindle M (2010) Stepping into the trachea with realistic physical models: uncertainties in regional drug deposition from powder inhalers. Respir Drug Deliv 1:215–224

    Google Scholar 

  4. Chen X et al (2013) High-fidelity simulations of impinging jet atomization. Atomization Sprays 23(12):1079–1101

    Article  Google Scholar 

  5. Ciciliani AM, Wachtel H, Heussel C, Langguth P (2015) Evaluation of Respimat® Soft Mist™ inhaler based on in vitro measurements and CFD simulations. Respir Drug Deliv Europe 2:357–362

    Google Scholar 

  6. Ciciliani AM (2016) Thesis, Department of Department of Biopharmaceutics and Pharmaceutical Technology. University of Mainz, Germany

    Google Scholar 

  7. Dalby R, Spallek M, Voshaar T (2004) A review of the development of Respimat® Soft Mist™ inhaler. Int J Pharm 283:1–9

    Article  Google Scholar 

  8. de Boer AH, Wissink J, Hagedoorn P et al (2007) In vitro performance testing of the novel Medspray wet aerosol inhaler based on the principle of Rayleigh breakup. Pharm Res 25:1186–1192

    Article  Google Scholar 

  9. DeHaan WH, Finlay WH (2001) In vitro monodisperse aerosol deposition in a mouth and throat with six different inhalation devices. J Aerosol Med 14(3):361–367

    Article  Google Scholar 

  10. Dolovich M, Bailey DL (2012) Positron emission tomography (PET) for assessing aerosol deposition of orally inhaled drug products. J Aerosol Med Pulm Drug Deliv 25(Suppl 1):S52–S71

    Google Scholar 

  11. EMA (2006) Guideline on the pharmaceutical quality of inhalation and nasal products. Document EMEA/CHMP/QWP/49313/2005 Corr

    Google Scholar 

  12. Finlay WH (2001) The mechanics of inhaled pharmaceutical aerosols. Academic, London

    Google Scholar 

  13. Ganderton D (1999) Targeted delivery of inhaled drugs: current challenges and future goals. J Aerosol Med 12(Suppl 1):S3–S8

    Google Scholar 

  14. Haefeli-Bleuer B, Weibel ER (1988) Morphometry of the human pulmonary acinus. Anat Rec 220:401–414

    Article  Google Scholar 

  15. Hochrainer D et al (2005) Comparison of the aerosol velocity and spray duration of Respimat® Soft Mist™ inhaler and pressurized metered dose inhalers. J Aerosol Med 18:273–282

    Article  Google Scholar 

  16. ICRP-66 (1994) The international commission on radiological protection. Elsevier Science Ltd, Oxford

    Google Scholar 

  17. Ling XY, Phang IY, Vancso GJ et al (2009) Stable and transparent superhydrophobic nanoparticle films. Langmuir 25:3260–3263

    Article  Google Scholar 

  18. Lyra M (2009) Single photon emission tomography (SPECT) and 3D images evaluation in nuclear medicine. In: Chen Y-S (ed) Image processing. InTech. http://www.intechopen.com/books/image-processing/single-photon-emission-tomography-spect-and-3dimages-evaluation-in-nuclear-medicine

    Google Scholar 

  19. Möller W, Schuschnig U, Khadem Saba G et al (2010) Sinus drug delivery by pulsating aerosol: clinical proof of concept studies. Respir Drug Deliv 1:111–120

    Google Scholar 

  20. Munnik P, de Boer AH, Wissink J et al (2009) In vivo performance testing of the novel medspray wet aerosol inhaler. J Aerosol Med Pulm Drug Deliv 22(4):317–321

    Article  Google Scholar 

  21. Netter FH (1982) Farbatlanten der Medizin, The ciba collection of medical illustrations, Band 4, Atmungsorgane. Georg Thieme Verlag, Stuttgart, p 25

    Google Scholar 

  22. Olsson B, Borgström L, Lundbäck H, Svensson M (2013) Validation of a general in vitro approach for prediction of total lung deposition in healthy adults for pharmaceutical inhalation products. J Aerosol Med Pulm Drug Deliv 26(6):355–369

    Article  Google Scholar 

  23. Raabe OG, Yeh H, Schum GM, Phalen RF (1976) Tracheobronchial geometry: human, dog, rat, hamster—a compilation of selected data from the project respiratory tract deposition models. U.S. Energy Research and Development Administration, Division of Biomedical and Environmental Research/Inhalation Toxicology Research Institute, Lovelace Foundation for Medical Education and Research, Albuquerque

    Google Scholar 

  24. Schoenbrodt T, Egen M, Heyder K et al (2010) Method development for deposition studies in a nasal cast. Respir Drug Deliv 2:445–450

    Google Scholar 

  25. Smutney et al (2014) Dry powder inhaler and system for drug delivery. Applicant Mannkind Corp., CA, USA. Patent no.: US 2014/0007873A1

    Google Scholar 

  26. Spallek M, Hochrainer D, Wachtel H (2002) Optimizing nozzles for soft mist inhalers. Respir Drug Deliv VIII(2):375–378

    Google Scholar 

  27. Van Hoeve et al (2010) Breakup of diminutive Rayleigh jets. Phys Fluids 22:122003

    Article  Google Scholar 

  28. Williams G (2010) EPAG perspective—regulatory advances related to nasal spray pumps. In: Nasal drug delivery, management forum, London, 15 Apr 2010

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Wachtel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wachtel, H. (2016). Respiratory Drug Delivery. In: Dietzel, A. (eds) Microsystems for Pharmatechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-26920-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26920-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26918-4

  • Online ISBN: 978-3-319-26920-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics