International Workshop on Hybrid Systems Biology

Hybrid Systems Biology pp 156-172 | Cite as

Studying Emergent Behaviours in Morphogenesis Using Signal Spatio-Temporal Logic

  • Ezio Bartocci
  • Luca Bortolussi
  • Dimitrios Milios
  • Laura Nenzi
  • Guido Sanguinetti
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9271)

Abstract

Pattern formation is an important spatio-temporal emergent behaviour in biology. Mathematical models of pattern formation in the stochastic setting are extremely challenging to execute and analyse. Here we propose a formal analysis of the emergent behaviour of stochastic reaction diffusion systems in terms of Signal Spatio-Temporal Logic, a recently proposed logic for reasoning on spatio-temporal systems. We present a formal analysis of the spatio-temporal dynamics of the Bicoid morphogen in Drosophila melanogaster, one of the most important proteins in the formation of the horizontal segmentation in the development of the fly embryo. We use a recently proposed framework for statistical model checking of stochastic systems with uncertainty on parameters to characterise the parametric dependence and robustness of the French Flag pattern, highlighting non-trivial correlations between the parameter values and the emergence of the patterning.

References

  1. 1.
  2. 2.
    Aydin Gol, E., Bartocci, E., Belta, E.: A formal methods approach to pattern synthesis in reaction diffusion systems. In: Proceedings of CDC 2014: the 53rd IEEE Conference on Decision and Control, pp. 108–113. IEEE (2014)Google Scholar
  3. 3.
    Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: On the robustness of temporal properties for stochastic models. In: Proceedings of HSB 2013: The Second International Workshop on Hybrid Systems and Biology, pp. 3–19 (2013)Google Scholar
  4. 4.
    Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: System design of stochastic models using robustness of temporal properties. Theor. Comput. Sci. 587, 3–25 (2015)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bartocci, E., Bortolussi, L., Sanguinetti, G.: Data-driven statistical learning of temporal logic properties. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 23–37. Springer, Heidelberg (2014) Google Scholar
  6. 6.
    Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)MATHGoogle Scholar
  7. 7.
    Bortolussi, L., Milios, D., Sanguinetti, G.: Smoothed model checking for uncertain continuous time Markov chains. CoRR ArXiv 1402.1450 (2014)Google Scholar
  8. 8.
    Bortolussi, L., Milios, D., Sanguinetti, G.: U-Check: model checking and parameter synthesis under uncertainty. In: Campos, J., Haverkort, B.R. (eds.) QEST 2015. LNCS, vol. 9259, pp. 89–104. Springer, Heidelberg (2015) CrossRefGoogle Scholar
  9. 9.
    Bortolussi, L., Sanguinetti, G.: Learning and designing stochastic processes from logical constraints. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 89–105. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  10. 10.
    Bortolussi, L., Nenzi, L.: Specifying and monitoring properties of stochastic spatio-temporal systems in signal temporal logic. In: Proceedings of VALUETOOLS 2014: The 8th International Conference on Performance Evaluation Methodologies and Tools, pp. 66–73. ICST (2014)Google Scholar
  11. 11.
    Bufo, S., Bartocci, E., Sanguinetti, G., Borelli, M., Lucangelo, U., Bortolussi, L.: Temporal logic based monitoring of assisted ventilation in intensive care patients. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part II. LNCS, vol. 8803, pp. 391–403. Springer, Heidelberg (2014) Google Scholar
  12. 12.
    Dewar, M.A., Kadirkamanathan, V., Opper, M., Sanguinetti, G.: Parameter estimation and inference for stochastic reaction-diffusion systems: application to morphogenesis in D. melanogaster. BMC Syst. Biol. 4, 21 (2010)CrossRefGoogle Scholar
  13. 13.
    Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 92–106. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  14. 14.
    Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  15. 15.
    Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for continuous-time signals. Theor. Comput. Sci. 410(42), 4262–4291 (2009)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Fried, P., Iber, D.: Dynamic scaling of morphogen gradients on growing domains. Nat. Commun. 5, 5077 (2014)CrossRefGoogle Scholar
  17. 17.
    Grosu, R., Smolka, S.A., Corradini, F., Wasilewska, A., Entcheva, E., Bartocci, E.: Learning and detecting emergent behavior in networks of cardiac myocytes. Commun. ACM 52(3), 97–105 (2009)CrossRefMATHGoogle Scholar
  18. 18.
    Haghighi, I., Jones, A., Kong, Z., Bartocci, E., Grosu, R., Belta, C.: SpaTeL: a novel spatial-temporal logic and its applications to networked systems. In: Proceedings of HSCC 2015: The 18th International Conference on Hybrid Systems: Computation and Control, pp. 189–198. ACM (2015)Google Scholar
  19. 19.
    Jaeger, J.: The gap gene network. Cell. Mol. Life Sci. 68(2), 243–274 (2010)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Jaeger, J., Martinez-Arias, A.: Getting the Measure of Positional Information. PLoS Biol. 7(3), e1000081 (2009)CrossRefGoogle Scholar
  21. 21.
    Jain, A., Duin, R., Mao, J.: Statistical pattern recognition: a review. IEEE Trans. Pattern Anal. Mach. Learn. 22, 4–37 (2000)CrossRefGoogle Scholar
  22. 22.
    Maini, P.K., Woolley, T.E., Baker, R.E., Gaffney, E.A., Lee, S.S.: Turing’s model for biological pattern formation and the robustness problem. Interface Focus 2(4), 487–496 (2012)CrossRefGoogle Scholar
  23. 23.
    Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT 2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  24. 24.
    Nenzi, L., Bortolussi, L., Ciancia, V., Loreti, M., Massink, M.: Qualitative and quantitative monitoring of spatio-temporal properties. In: Bartocci, E., et al. (eds.) RV 2015. LNCS, vol. 9333, pp. 21–37. Springer, Heidelberg (2015) CrossRefGoogle Scholar
  25. 25.
    Pavlidis, T.: Structural Pattern Recognition. Springer, New York (1980)MATHGoogle Scholar
  26. 26.
    Phillips, R., Kondev, J., Theriot, J.: Physical biology of the cell. Garland Science, New York (2009)Google Scholar
  27. 27.
    Srinivas, N., Krause, A., Kakade, S., Seeger, M.: Information-theoretic regret bounds for Gaussian process optimisation in the bandit setting. IEEE Trans. Inf. Theory 58(5), 3250–3265 (2012)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Turing, A.: The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. 237, 37–72 (1952)CrossRefGoogle Scholar
  29. 29.
    Wolpert, L.: The french flag problem: a contribution to the discussion on pattern development and regulation. Towards Theor. Biol. 1, 125–133 (1968)Google Scholar
  30. 30.
    Wolpert, L., Tickle, C., Arias, A.M.: Principles of Development. Oxford University Press, London (2015) Google Scholar
  31. 31.
    Wu, Y.F., Myasnikova, E., Reinitz, J.: Master equation simulation analysis of immunostained bicoid morphogen gradient. BMC Syst. Biol. 1, 52 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ezio Bartocci
    • 1
  • Luca Bortolussi
    • 2
    • 3
    • 4
  • Dimitrios Milios
    • 5
  • Laura Nenzi
    • 6
  • Guido Sanguinetti
    • 5
    • 7
  1. 1.Faculty of InformaticsVienna University of TechnologyViennaAustria
  2. 2.Department of Maths and GeosciencesUniversity of TriesteTriesteItaly
  3. 3.CNR/ISTIPisaItaly
  4. 4.Modelling and Simulation GroupSaarland UniversitySaarbrückenGermany
  5. 5.School of InformaticsUniversity of EdinburghEdinburghUK
  6. 6.IMT LuccaLuccaItaly
  7. 7.SynthSys, Centre for Synthetic and Systems BiologyUniversity of EdinburghEdinburghUK

Personalised recommendations