International Workshop on Hybrid Systems Biology

Hybrid Systems Biology pp 20-34 | Cite as

Comparative Statistical Analysis of Qualitative Parametrization Sets

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9271)

Abstract

The problem of model parametrization is a core issue for all varieties of mathematical modelling in biology. This problem becomes more tractable when qualitative modelling is used, since the range of parameter values is finite and consequently it is possible to enumerate and evaluate all possible parametrizations of a model. If such an approach is undertaken, one usually obtains a vast set of parametrizations that are scored for various properties, e.g. fitness. The usual next step is to take the best scoring parametrization. However, as noted in recent works [1, 4], there is knowledge to be gained from examining sets of parametrizations based on their scoring. In this article we extend this line of thought and introduce a comprehensive workflow for comparing such sets and obtaining knowledge from the comparison.

Keywords

Qualitative modelling Statistical inference Big data Parameter identification Data mining 

References

  1. 1.
    Alexopoulos, L.G., Saez-Rodriguez, J., Cosgrove, B.D., Lauffenburger, D.A., Sorger, P.K.: Networks inferred from biochemical data reveal profound differences in toll-like receptor and inflammatory signaling between normal and transformed hepatocytes. Mol. Cell. Proteomics 9(9), 1849–1865 (2010)CrossRefGoogle Scholar
  2. 2.
    DAlessandro, L.A., Samaga, R., Maiwald, T., Rho, S.-H., Bonefas, S., Raue, A., Iwamoto, N., Kienast, A., Waldow, K., Meyer, R., Schilling, M., Timmer, J., Klamt, S., Klingmller, U.: Disentangling the complexity of HGF signaling by combining qualitative and quantitative modeling. PLoS Comput. Biol. 11(4), e1004192 (2015)CrossRefGoogle Scholar
  3. 3.
    de Jong, H.: Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 9(1), 67–103 (2002)CrossRefGoogle Scholar
  4. 4.
    Guziolowski, C., Videla, S., Eduati, F., Thiele, S., Cokelaer, T., Siegel, A., Saez-Rodriguez, J.: Exhaustively characterizing feasible logic models of a signaling network using answer set programming. Bioinformatics 30, 2320–2326 (2013)CrossRefGoogle Scholar
  5. 5.
    Klarner, H., Siebert, H., Bockmayr, A.: Time series dependent analysis of unparametrized Thomas networks. IEEE/ACM Trans. Comput. Biol. Bioinf. 99, 1338–1351 (2012)CrossRefGoogle Scholar
  6. 6.
    Lee, W.-P., Tzou, W.-S.: Computational methods for discovering gene networks from expression data. Briefings Bioinf. 10(4), 408–423 (2009)Google Scholar
  7. 7.
    Miller, D.M., Thornton, M.A.: Multiple Valued Logic: Concepts and Representations, vol. 2. Morgan & Claypool Publishers, San Rafael (2007)Google Scholar
  8. 8.
    Saadatpour, A., Albert, R., Reluga, T.C.: A reduction method for boolean network models proven to conserve attractors. SIAM J. Appl. Dyn. Syst. 12(4), 1997–2011 (2013)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Shmulevich, I., Kauffman, S.A.: Activities and sensitivities in boolean network models. Phys. Rev. Lett. 93(4), 048701 (2004)CrossRefGoogle Scholar
  10. 10.
    Snoussi, E.H.: Qualitative dynamics of piecewise-linear differential equations: a discrete mapping approach. Dyn. Stab. Syst. 4(3–4), 565–583 (1989)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Streck, A.: HGF network analysis (2015). http://dibimath.github.io/HGF_4_8_12/. Accessed 18 June 2015
  12. 12.
    Streck, A.: HSB 2015 example model data (2015). http://dibimath.github.io/HSB_2015/. Accessed 18 June 2015
  13. 13.
    Streck, A.: TREMPPI source repository (2015). https://github.com/xstreck1/TREMPPI/. Accessed 18 June 2015
  14. 14.
    Streck, A., Siebert, H.: Extensions for LTL model checking of Thomas networks. In: Advances is Systems and Synthetic Biology, vol. 14, pp. 101–114. EDP Sciences (2015)Google Scholar
  15. 15.
    Streck, A., Thobe, K., Siebert, H.: Analysing cell line specific EGFR signalling via optimized automata based model checking. In: Roux, O., Bourdon, J. (eds.) CMSB 2015. LNCS, vol. 9308, pp. 264–276. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  16. 16.
    Thobe, K., Streck, A., Klarner, H., Siebert, H.: Model Integration and crosstalk analysis of logical regulatory networks. In: Mendes, P., Dada, J.O., Smallbone, K. (eds.) CMSB 2014. LNCS, vol. 8859, pp. 32–44. Springer, Heidelberg (2014)Google Scholar
  17. 17.
    Thomas, R.: Regulatory networks seen as asynchronous automata: a logical description. J. Theoret. Biol. 153(1), 1–23 (1991)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Freie Universität BerlinBerlinGermany

Personalised recommendations