International Workshop on Hybrid Systems Biology

Hybrid Systems Biology pp 3-19 | Cite as

Reconstructing Statistics of Promoter Switching from Reporter Protein Population Snapshot Data

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9271)

Abstract

The use of fluorescent reporter proteins is an established experimental approach for dynamic quantification of gene expression over time. Yet, the observed fluorescence levels are only indirect measurements of the relevant promoter activity. At the level of population averages, reconstruction of mean activity profiles from mean fluorescence profiles has been addressed with satisfactory results. At the single cell level, however, promoter activity is generally different from cell to cell. Making sense of this variability is at the core of single-cell modelling, but complicates the reconstruction task. Here we discuss reconstruction of promoter activity statistics from time-lapse population snapshots of fluorescent reporter statistics, as obtained e.g. by flow-cytometric measurements of a dynamical gene expression experiment. After discussing the problem in the framework of stochastic modelling, we provide an estimation method based on convex optimization. We then instantiate it in the fundamental case of a single promoter switch, reflecting a typical random promoter activation or deactivation, and discuss estimation results from in silico experiments.

Keywords

Identification Gene regulatory networks Doubly stochastic process 

References

  1. 1.
    Bansal, M., Belcastro, V., Ambesi-Impiombato, A., di Bernardo, D.: How to infer gene networks from expression profiles. Mol. Syst. Biol. 3, 78 (2007)CrossRefGoogle Scholar
  2. 2.
    Bowsher, C.G., Voliotis, M., Swain, P.S.: The fidelity of dynamic signaling by noisy biomolecular networks. PLoS Comput. Biol. 9(3), e1002965 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cinquemani, E.: Reconstruction of promoter activity statistics from reporter protein population snapshot data. In: Accepted for the 54th IEEE Conference on Decision and Control (2015)Google Scholar
  4. 4.
    Cinquemani, E., Milias-Argeitis, A., Summers, S., Lygeros, J.: Local identification of piecewise deterministic models of genetic networks. In: Majumdar, R., Tabuada, P. (eds.) HSCC 2009. LNCS, vol. 5469, pp. 105–119. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Cox, D., Isham, V.: Point Processes. Chapman & Hall/CRC Monographs on Statistics & Applied Probability, Taylor & Francis (1980)Google Scholar
  6. 6.
    Finkenstädt, B., Heron, E.A., Komorowski, M., Edwards, K., Tang, S., Harper, C.V., Davis, J.R.E., White, M.R.H., Millar, A.J., Rand, D.A.: Reconstruction of transcriptional dynamics from gene reporter data using differential equations. Bioinformatics 24(24), 2901–2907 (2008)CrossRefGoogle Scholar
  7. 7.
    Friedman, N., Cai, L., Xie, X.S.: Linking stochastic dynamics to population distribution: An analytical framework of gene expression. Phys. Rev. Lett. 97, 168302 (2006)CrossRefGoogle Scholar
  8. 8.
    Gillespie, D.T.: The chemical Langevin equation. J. Chem. Phys. 113, 297–306 (2000)CrossRefGoogle Scholar
  9. 9.
    Hasenauer, J., Waldherr, S., Doszczak, M., Radde, N., Scheurich, P., Allgower, F.: Identification of models of heterogeneous cell populations from population snapshot data. BMC Bioinf. 12(1), 125 (2011)CrossRefMATHGoogle Scholar
  10. 10.
    Hespanha, J.: Modelling and analysis of stochastic hybrid systems. IEE Proc. Control Theory Appl. 153(5), 520–535 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    de Jong, H., Ranquet, C., Ropers, D., Pinel, C., Geiselmann, J.: Experimental and computational validation of models of fluorescent and luminescent reporter genes in bacteria. BMC Syst. Biol. 4(1), 55 (2010)CrossRefGoogle Scholar
  12. 12.
    Kaern, M., Elston, T.C., Blake, W.J., Collins, J.J.: Stochasticity in gene expression: From theories to phenotypes. Nat. Rev. Gen. 6, 451–464 (2005)CrossRefGoogle Scholar
  13. 13.
    Komorowski, M., Finkenstädt, B., Harper, C., Rand, D.: Bayesian inference of biochemical kinetic parameters using the linear noise approximation. BMC Bioinf. 10(1), 343 (2009)CrossRefGoogle Scholar
  14. 14.
    Lillacci, G., Khammash, M.: The signal within the noise: efficient inference of stochastic gene regulation models using fluorescence histograms and stochastic simulations. Bioinformatics 29(18), 2311–2319 (2013)CrossRefGoogle Scholar
  15. 15.
    Lindquist, A., Picci, G.: Linear Stochastic Systems - A Geometric Approach to Modeling, Estimation and Identification. Springer, Heidelberg (2015)MATHGoogle Scholar
  16. 16.
    Milias-Argeitis, A., Stewart-Ornstein, S.S.J., Zuleta, I., Pincus, D., El-Samad, H., Khammash, M., Lygeros, J.: In silico feedback for in vivo regulation of a gene expression circuit. Nat. Biotechnol. 29, 1114–1116 (2011)CrossRefGoogle Scholar
  17. 17.
    Munsky, B., Trinh, B., Khammash, M.: Listening to the noise: random fluctuations reveal gene network parameters. Mol. Syst. Biol. 5, 318 (2009)CrossRefGoogle Scholar
  18. 18.
    Neuert, G., Munsky, B., Tan, R., Teytelman, L., Khammash, M., van Oudenaarden, A.: Systematic identification of signal-activated stochastic gene regulation. Science 339(6119), 584–587 (2013)CrossRefGoogle Scholar
  19. 19.
    Ocone, A., Haghverdi, L., Mueller, N.S., Theis, F.J.: Reconstructing gene regulatory dynamics from high-dimensional single-cell snapshot data. Bioinformatics 31(12), i89–i96 (2015)CrossRefGoogle Scholar
  20. 20.
    Lafferty, J., Williams, C., Shawe-Taylor, J., Zemel, R., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23, pp. 1831–1839. Curran Associates, Inc., (2010)Google Scholar
  21. 21.
    Parise, F., Ruess, J., Lygeros, J.: Grey-box techniques for the identification of a controlled gene expression model. In: Proceedings of the ECC (2014)Google Scholar
  22. 22.
    Paulsson, J.: Models of stochastic gene expression. Phys. Life Rev. 2(2), 157–175 (2005)CrossRefGoogle Scholar
  23. 23.
    Porreca, R., Cinquemani, E., Lygeros, J., Ferrari-Trecate, G.: Identification of genetic network dynamics with unate structure. Bioinformatics 26(9), 1239–1245 (2010)CrossRefMATHGoogle Scholar
  24. 24.
    Ruess, J., Lygeros, J.: Moment-based methods for parameter inference and experiment design for stochastic biochemical reaction networks. ACM Trans. Model. Comput. Simul. 25(2), 8 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Ruess, J., Milias-Argeitis, A., Summers, S., Lygeros, J.: Moment estimation for chemically reacting systems by extended Kalman filtering. J. Chem. Phys. 135(16), 165102 (2011)CrossRefGoogle Scholar
  26. 26.
    Samad, H.E., Khammash, M., Petzold, L., Gillespie, D.: Stochastic modelling of gene regulatory networks. Int. J. Robust Nonlin. Contr. 15, 691–711 (2005)CrossRefMathSciNetMATHGoogle Scholar
  27. 27.
    Sanft, K.R., Wu, S., Roh, M., Fu, J., Lim, R.K., Petzold, L.R.: Stochkit2: software for discrete stochastic simulation of biochemical systems with events. Bioinformatics 27(17), 2457–2458 (2011)CrossRefGoogle Scholar
  28. 28.
    Stefan, D., Pinel, C., Pinhal, S., Cinquemani, E., Geiselmann, J., de Jong, H.: Inference of quantitative models of bacterial promoters from time-series reporter gene data. PLoS Comput. Biol. 11(1), e1004028 (2015)CrossRefGoogle Scholar
  29. 29.
    Suter, D.M., Molina, N., Gatfield, D., Schneider, K., Schibler, U., Naef, F.: Mammalian genes are transcribed with widely different bursting kinetics. Science 332, 472–474 (2011)CrossRefGoogle Scholar
  30. 30.
    Taniguchi, Y., Choi, P.J., Li, G.W., Chen, H., Babu, M., Hearn, J., Emili, A., Xie, X.S.: Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329, 533–538 (2010)CrossRefGoogle Scholar
  31. 31.
    Thattai, M., van Oudenaarden, A.: Intrinsic noise in gene regulatory networks. PNAS 98(15), 8614–8619 (2001)CrossRefGoogle Scholar
  32. 32.
    Uhlendorf, J., Miermont, A., Delaveau, T., Charvin, G., Fages, F., Bottani, S., Batt, G., Hersen, P.: Long-term model predictive control of gene expression at the population and single-cell levels. PNAS 109(35), 14271–14276 (2012)CrossRefGoogle Scholar
  33. 33.
    Wahba, G.: Spline models for observational data. In: SIAM (1990)Google Scholar
  34. 34.
    Zechner, C., Ruess, J., Krenn, P., Pelet, S., Peter, M., Lygeros, J., Koeppl, H.: Moment-based inference predicts bimodality in transient gene expression. PNAS 21(109), 8340–8345 (2012)CrossRefGoogle Scholar
  35. 35.
    Zechner, C., Unger, M., Pelet, S., Peter, M., Koeppl, H.: Scalable inference of heterogeneous reaction kinetics from pooled single-cell recordings. Nat. Methods 11, 197–202 (2014)CrossRefGoogle Scholar
  36. 36.
    Zulkower, V., Page, M., Ropers, D., Geiselmann, J., de Jong, H.: Robust reconstruction of gene expression profiles from reporter gene data using linear inversion. Bioinformatics 31(12), i71–i79 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.INRIA Grenoble – Rhône-AlpesSaint-Ismier CEDEXFrance

Personalised recommendations