Advertisement

Cyber-Physical Systems: Opportunities, Challenges and (Some) Solutions

  • Peter Marwedel
  • Michael Engel
Chapter
Part of the Internet of Things book series (ITTCC)

Abstract

The notion of Cyber-Physical Systems (CPS) has recently been introduced. The term describes the integration of information and computation technologies (ICT) with real, physical objects. In this chapter, we motivate work in this new area by presenting the large set of opportunities resulting from this integration. However, this requires coping with a number of challenges which we do also include in this chapter. The final main section of this chapter comprises solutions which demonstrate that it is feasible to address the challenges and find solutions, even though a major amount of additional work is required.

Keywords

Embed System Abstract Interpretation Computer Science Program Register Spilling Zeno Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

Some of the work described in this chapter has been supported by Deutsche Forschungsgemeinschaft in the context of our Collaborative Research Center SFB 876 and the Priority Program SPP 1500 on Dependable Embedded Systems. We do also acknowledge the support of the European Community through the ArtistDesign network of excellence and the PREDATOR project under grant agreement no. 216008.

References

  1. 1.
    Absint: aiT worst-case execution time analyzers (2015). http://www.absint.de/ait
  2. 2.
    Agogino, A.: Distributed coordination of agents for air traffic flow management (2009). http://cps-vo.org/node/954
  3. 3.
  4. 4.
    Auffermann, C., Kamagaev, A., Nettsträter, A., ten Hompel, M., Vastag, A., Verbeek, K., Wolf, O.: Cyber physical systems in logistics. http://www.effizienzcluster.de/files/9/5/938_scientific_paper_cyber_physical_systems_in_logistics.pdf
  5. 5.
    Aviziens, A.: Fault-tolerant systems. IEEE Trans. Comput. C-25(12), 1304–1312 (1976). doi: 10.1109/TC.1976.1674598
  6. 6.
    Brisk, P.: System support for generally programmable digital microfluidic biochip devices (2011). http://cps-vo.org/node/1029
  7. 7.
    Bullo, F., et al.: Dynamic routing and robotic coordination for oceanographic adaptive sampling (2013). http://cps-vo.org/node/9357
  8. 8.
    Cavusoglu, M.C.: A framework for validation and monitoring of robotic surgery systems (2010). http://cps-vo.org/node/1028
  9. 9.
    Chakrapani, L., Muntimadugu, K., Lingamneni, A., George, J., Palem, K.: Highly energy and performance efficient embedded computing through approximately correct arithmetic. In: Proceedings of CASES, pp. 187–196. ACM (2008)Google Scholar
  10. 10.
    Cousot, P.: Abstract Interpretation. ACM Comput. Surv. 28(2), 324–328 (1996). doi: 10.1145/234528.234740. http://doi.acm.org/10.1145/234528.234740
  11. 11.
    Düben, P.D., Joven, J., Lingamneni, A., McNamara, H., De Micheli, G., Palem, K.V., Palmer, T.N.: On the use of inexact, pruned hardware in atmospheric modelling. Philos. Trans. Royal Soc. London A: Math. Phys. Eng. Sci. 372(2018) (2014). doi: 10.1098/rsta.2013.0276
  12. 12.
    Dunstan, W.: Computer and GPS navigation system for an autonomous ocean vessel. In: Proceedings of the Third Australian and New Zealand Conference on Intelligent Information Systems, ANZIIS-95, pp. 316–323 (1995). doi: 10.1109/ANZIIS.1995.705758
  13. 13.
    Engel, M., Schmoll, F., Heinig, A., Marwedel, P.: Unreliable yet useful—reliability annotations for data in cyber-physical systems. In: Proceedings of the 2011 Workshop on Software Language Engineering for Cyber-physical Systems (WS4C). Berlin, Germany (2011)Google Scholar
  14. 14.
    European Commission: ICT 2014—Information and Communications Technologies, call H2020-ICT-2014-1 (2014). http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/78-ict-01-2014.html
  15. 15.
    Falk, H.: WCET-Aware Register Allocation Based on Graph Coloring. In: The 46th Design Automation Conference (DAC), pp. 726–731. San Francisco, USA (2009)Google Scholar
  16. 16.
    Falk, H., Kleinsorge, J.C.: Optimal static WCET-aware scratchpad allocation of program code. In: The 46th Design Automation Conference (DAC), pp. 732–737. San Francisco (2009)Google Scholar
  17. 17.
    Falk, H., Plazar, S., Theiling, H.: Compile time decided instruction cache locking using worst-case execution paths. In: International Conference on Hardware/Software Codesign and System Synthesis (CODES + ISSS), pp. 143–148. Salzburg, Austria (2007)Google Scholar
  18. 18.
    Falliere, N., Murchu, L.O., Chien, E.: W32. stuxnet dossier. White paper, Symantec Corp., Security Response (2011)Google Scholar
  19. 19.
    Federal Goverment of Germany: The new high-tech strategy—innovations for Germany (2014). http://www.bmbf.de/pub/HTS_Broschuere_engl_bf.pdf
  20. 20.
    Fraunhofer Institute for Material Flow and Logistics: InBin—Intelligent Bin (2015). http://www.iml.fraunhofer.de/en/fields_of_activity/automation_embedded_systems/Products/InBin.html
  21. 21.
    Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J. 29(2), 147–160 (1950). doi: 10.1002/j.1538-7305.1950.tb00463.x MathSciNetCrossRefGoogle Scholar
  22. 22.
  23. 23.
    Heinig, A., Engel, M., Schmoll, F., Marwedel, P.: Using application knowledge to improve embedded systems dependability. In: Proceedings of the Workshop on Hot Topics in System Dependability (HotDep 2010). USENIX Association, Vancouver, Canada (2010)Google Scholar
  24. 24.
    Heinig, A., Mooney, V.J., Schmoll, F., Marwedel, P., Palem, K., Engel, M.: Classification-based improvement of application robustness and quality of service in probabilistic computer systems. In: Proceedings of ARCS 2012—International Conference on Architecture of Computing Systems. Munich, Germany (2012)Google Scholar
  25. 25.
    de Kruijf, M., Nomura, S., Sankaralingam, K.: Relax: An architectural framework for software recovery of hardware faults. In: Proceedings of the 37th Annual International Symposium on Computer Architecture, ISCA ‘10, pp. 497–508. ACM, New York, NY, USA (2010). doi: 10.1145/1815961.1816026
  26. 26.
    Lee, E.A.: The future of embedded software. ARTEMIS Conference, Graz (2006). http://ptolemy.eecs.berkeley.edu/presentations/06/FutureOfEmbeddedSoftware_Lee_Graz.ppt
  27. 27.
    Lee, E.A.: Computing foundations and practice for cyber-physical systems: a preliminary report. Technical Report UCB/EECS-2007-72, EECS Department, University of California, Berkeley (2007). http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-72.html
  28. 28.
    Libuschewski, P., Siedhoff, D., Timm, C., Gelenberg, A., Weichert, F.: Fuzzy-enhanced, real-time capable detection of biological viruses using a portable biosensor. In: Proceedings of the International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSIGNALS), pp. 169–174 (2013)Google Scholar
  29. 29.
    Lokuciejewski, P., Gedikli, F., Marwedel, P., Morik, K.: Automatic WCET reduction by machine learning based heuristics for function inlining. In: 3rd Workshop on Statistical and Machine Learning Approaches to Architectures and Compilation (SMART), pp. 1–15 (2009)Google Scholar
  30. 30.
    Marwedel, P.: Embedded System Design. Kluwer Academic Publishers, Berlin (2003)Google Scholar
  31. 31.
    Marwedel, P.: Embedded System Design—Embedded Systems Foundations of Cyber-Physical Systems. Springer, Berlin (2011)Google Scholar
  32. 32.
    Marwedel, P., Engel, M.: Videos of the course cyber-physical system fundamentals at TU Dortmund (2012). http://www.youtube.com/user/cyphysystems
  33. 33.
    Marwedel, P., Engel, M.: Flipped classroom teaching for a cyber-physical system course—an adequate presence-based learning approach in the internet age. In: Proceedings of the Tenth European Workshop on Microelectronics Education (EWME). IEEE, Tallinn, Estonia (2014)Google Scholar
  34. 34.
    Morik, K., et al.: Collaborative research center on resource constrained machine learning (2015). http://www.sfb876.tu-dortmund.de
  35. 35.
    Mosterman, P.J.: Hybrid dynamic systems: modeling and execution. In: Fishwick, P.A. (ed.) Handbook of Dynamic System Modeling, CRC Press (2007)Google Scholar
  36. 36.
    National Instruments: Overview of structural health monitoring solutions (2014). www.ni.com/white-paper/8426/en/pdf
  37. 37.
    National Science Foundation: Cyber-Physical Systems (CPS) (2010). http://www.nsf.gov/pubs/2010/nsf10515/nsf10515.htm
  38. 38.
    Neugebauer, O., Libuschewski, P., Engel, M., Mueller, H., Marwedel, P.: Plasmon-based virus detection on heterogeneous embedded systems. In: Proceedings of Workshop on Software and Compilers for Embedded Systems (SCOPES) (2015)Google Scholar
  39. 39.
    Okuda, R., Kajiwara, Y., Terashima, K.: A survey of technical trend of ADAS and autonomous driving. In: Proceedings of Technical Program—2014 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), pp. 1–4 (2014). doi: 10.1109/VLSI-TSA.2014.6839646
  40. 40.
  41. 41.
    Pappas, G.: Science of cyber-physical systems bridging CS and control (2012). http://cps-vo.org/node/5876
  42. 42.
    Penemon Institute: 2014 Global report on the cost of cyber crime (2014). http://www.ponemon.org/library/2014-global-report-on-the-cost-of-cyber-crime
  43. 43.
    Peter Greenhalgh, ARM: Big.LITTLE processing with ARM Cortex-A15 & Cortex-A7 (2013). http://www.arm.com/files/downloads/big_LITTLE_Final_Final.pdf
  44. 44.
    Potop-Butucaru, D., de Simone, R., Talpin, J.P.: The synchronous hypothesis and synchronous languages. In: Richard, Z. (ed.): Embedded Systems Handbook, CRC Press (2006)Google Scholar
  45. 45.
    PREDATOR Consortium: Predator—design for predictability and efficiency. http://www.predator-project.eu/
  46. 46.
    Reis, G.A., Chang, J., Vachharajani, N., Rangan, R., August, D.I.: Swift: software implemented fault tolerance. In: Proceedings of the International Symposium on Code Generation and Optimization, CGO ’05, pp. 243–254. IEEE Computer Society, Washington, DC, USA (2005)Google Scholar
  47. 47.
    Ross, P.E.: When will software have the right stuff? Spectr. IEEE 48(12), 38–43 (2011). doi: 10.1109/MSPEC.2011.6085781 CrossRefGoogle Scholar
  48. 48.
    Sampson, A., Dietl, W., Fortuna, E., Gnanapragasam, D., Ceze, L., Grossman, D.: EnerJ: approximate data types for safe and general low-power computation. In: Proceedings of PLDI, pp. 164–174. ACM, New York, NY, USA (2011)Google Scholar
  49. 49.
    Schmoll, F., Heinig, A., Marwedel, P., Engel, M.: Improving the fault resilience of an H.264 decoder using static analysis methods. ACM Trans. Embed. Comput. Syst. (TECS) 13(1s), 31.1–31.27 (2013)Google Scholar
  50. 50.
    Tabuada, P.: Is it about time for control? 2012 NSF CPS PI meeting, http://cps-vo.org/node/5997 (2012)
  51. 51.
    Taha, W., Cartwright, R.: Some Challenges for Model-Based Simulation. The 4th Analytic Virtual Integration of Cyber-Physical Systems Workshop, Vancouver (2013)Google Scholar
  52. 52.
    TriQuint Semiconductor Inc.: FAQ 11: what is the MTBF for gallium arsenide devices? (2010). http://www.triquint.com/company/quality/faqs/faq_11.cfm
  53. 53.
    Vijaykumar, T.N., Pomeranz, I., Cheng, K.: Transient-fault recovery using simultaneous multithreading. In: Proceedings of the 29th Annual International Symposium on Computer Architecture, ISCA ’02, pp. 87–98. IEEE Computer Society, Washington, DC, USA (2002). http://dl.acm.org/citation.cfm?id=545215.545226
  54. 54.
    Weiser, M.: Ubiquitous computing (2003). http://www.ubiq.com/hypertext/weiser/UbiHome.html

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.TU DortmundDortmundGermany

Personalised recommendations