Gracefully Degrading Consensus and k-Set Agreement in Directed Dynamic Networks

  • Martin Biely
  • Peter Robinson
  • Ulrich Schmid
  • Manfred Schwarz
  • Kyrill Winkler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9466)

Abstract

We present (This work has been supported the Austrian Science Fund (FWF) project P26436 (SIC) and S11405 (RiSE).) the first consensus/k-set agreement algorithm for synchronous dynamic networks with unidirectional links, controlled by an omniscient message adversary, which automatically adapts to the actual network properties in a run: If the network is sufficiently well-connected, it solves consensus, while it degrades gracefully to general k-set agreement in less well-connected communication graphs. The actual number k of system-wide decision values is determined by the number of certain vertex-stable root components occurring in a run, which are strongly connected components without incoming links from outside. Related impossibility results reveal that our condition is reasonably close to the solvability border for k-set agreement.

References

  1. 1.
    Afek, Y., Gafni, E.: Asynchrony from synchrony. In: Frey, D., Raynal, M., Sarkar, S., Shyamasundar, R.K., Sinha, P. (eds.) ICDCN 2013. LNCS, vol. 7730, pp. 225–239. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  2. 2.
    Aguilera, M.K., Chen, W., Toueg, S.: Using the heartbeat failure detector for quiescent reliable communication and consensus in partitionable networks. Theor. Comput. Sci. 220(1), 3–30 (1999)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Biely, M., Robinson, P., Schmid, U.: Easy impossibility proofs for k-set agreement in message passing systems. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 299–312. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  4. 4.
    Biely, M., Robinson, P., Schmid, U.: Solving k-set agreement with stable skeleton graphs. In: Proceedings of the IPDPS Workshops, pp. 1488–1495 (2011)Google Scholar
  5. 5.
    Biely, M., Robinson, P., Schmid, U.: Agreement in directed dynamic networks. In: Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 73–84. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  6. 6.
    Biely, M., Robinson, P., Schmid, U., Schwarz, M., Winkler, K.: Gracefully degrading consensus and \(k\)-set agreement in directed dynamic networks, January 2015. arXiv:1501.02716
  7. 7.
    Bonnet, F., Raynal, M.: On the road to the weakest failure detector for k-set agreement in message-passing systems. Theor. Comput. Sci. 412(33), 4273–4284 (2011)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. IJPEDS 27(5), 387–408 (2012)Google Scholar
  9. 9.
    Dwork, C., Peleg, D., Pippenger, N., Upfal, E.: Fault tolerance in networks of bounded degree. SIAM J. Comput. 17(5), 975–988 (1988)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Janson, S., Knuth, D.E., Luczak, T., Pittel, B.: The birth of the giant component. Random Struct. Algorithms 4, 233–358 (1993)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Kuhn, F., Oshman, R., Moses, Y.: Coordinated consensus in dynamic networks. In: Proceedings of the PODC 2011 (2011)Google Scholar
  12. 12.
    Mattern, F.: Virtual time and global states of distributed systems. In: Parallel and Distributed Algorithms, pp. 215–226. North-Holland (1989)Google Scholar
  13. 13.
    Newport, C., Kotz, D., Yuan, Y., Gray, R.S., Liu, J., Elliott, C.: Experimental evaluation of wireless simulation assumptions. SIMULATION: Trans. Soc. Model. Simul. Int. 83(9), 643–661 (2007)CrossRefGoogle Scholar
  14. 14.
    Raynal, M., Stainer, J.: Synchrony weakened by message adversaries vs asynchrony restricted by failure detectors. In: Proceedings of the PODC 2013, pp. 166–175 (2013)Google Scholar
  15. 15.
    Schmid, U., Weiss, B., Keidar, I.: Impossibility results and lower bounds for consensus under link failures. SIAM J. Comput. 38(5), 1912–1951 (2009)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Sealfon, A., Sotiraki, A.A.: Brief announcement: agreement in partitioned dynamic networks. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 555–556. Springer, Heidelberg (2014)Google Scholar
  17. 17.
    Vaidya, N.H., Pradhan, D.K.: Degradable agreement in the presence of Byzantine faults. In: Proceedings of ICDCS 1993, pp. 237–244 (1993)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Martin Biely
    • 1
  • Peter Robinson
    • 2
  • Ulrich Schmid
    • 3
  • Manfred Schwarz
    • 3
  • Kyrill Winkler
    • 3
  1. 1.EPFLLausanneSwitzerland
  2. 2.National University of SingaporeSingaporeSingapore
  3. 3.ECS GroupTU WienViennaAustria

Personalised recommendations