Advertisement

Antichains for the Verification of Recursive Programs

  • Lukáš Holík
  • Roland Meyer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9466)

Abstract

Safety verification of while programs is often phrased in terms of inclusions \(L(A)\subseteq L(B)\) among regular languages. Antichain-based algorithms have been developed as an efficient method to check such inclusions. In this paper, we generalize the idea of antichain-based verification to verifying safety properties of recursive programs. To be precise, we give an antichain-based algorithm for checking inclusions of the form \(L(G)\subseteq L(B)\), where \(G\) is a context-free grammar and \(B\) is a finite automaton. The idea is to phrase the inclusion as a data flow analysis problem over a relational domain. In a second step, we generalize the approach towards bounded context switching.

Notes

Acknowledgement

This work was supported by the DFG project R2M2: Robustness against Relaxed Memory Models, the Czech Science Foundation (projects 14-11384S and 202/13/37876P), the BUT FIT project FIT-S-14-2486, and the EU/Czech IT4Innovations Centre of Excellence project CZ.1.05/1.1.00/02.0070.

References

  1. 1.
    Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems for infinite-state systems. In: LICS, pp. 313–321. IEEE (1996)Google Scholar
  2. 2.
    Atig, M.F., Bouajjani, A., Parlato, G.: Getting rid of store-buffers in TSO analysis. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 99–115. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  3. 3.
    Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Lane, S.M., Siefkes, D. (eds.) The Collected Works of J. Richard Büchi. Springer, New York (1990) Google Scholar
  4. 4.
    Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis of concurrent programs with procedures. In: POPL, pp. 62–73. ACM (2003)Google Scholar
  5. 5.
    Bruyère, V., Ducobu, M., Gauwin, O.: Visibly pushdown automata: universality and inclusion via antichains. In: Dediu, A.-H., Martín-Vide, C., Truthe, B. (eds.) LATA 2013. LNCS, vol. 7810, pp. 190–201. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  6. 6.
    Cousot, P., Cousot, R.: Automatic synthesis of optimal invariant assertions: mathematical foundations. In: Artificial Intelligence and Programming Languages, pp. 1–12. ACM (1977)Google Scholar
  7. 7.
    De Wulf, M., Doyen, L., Raskin, J.-F.: A lattice theory for solving games of imperfect information. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 153–168. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  8. 8.
    Esparza, J., Kiefer, S., Luttenberger, M.: Newtonian program analysis. JACM 57(6), 33:1–33:47 (2010)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Farzan, A., Kincaid, Z., Podelski, A.: Inductive data flow graphs. In: POPL, pp. 129–142. ACM (2013)Google Scholar
  10. 10.
    Farzan, A., Kincaid, Z., Podelski, A.: Proofs that count. In: POPL, pp. 151–164. ACM (2014)Google Scholar
  11. 11.
    Farzan, A., Kincaid, Z., Podelski, A.: Proof spaces for unbounded parallelism. In: POPL, pp. 407–420. ACM (2015)Google Scholar
  12. 12.
    Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere!. Theor. Comput. Sci. 256(1–2), 63–92 (2001)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Fogarty, S., Vardi, M.Y.: Efficient Büchi universality checking. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 205–220. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  14. 14.
    Friedmann, O., Klaedtke, F., Lange, M.: Ramsey goes visibly pushdown. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 224–237. Springer, Heidelberg (2013) Google Scholar
  15. 15.
    Heizmann, M., Hoenicke, J., Podelski, A.: Nested interpolants. In: POPL, pp. 471–482. ACM (2010)Google Scholar
  16. 16.
    Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who love automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 36–52. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  17. 17.
    Lal, A., Touili, T., Kidd, N., Reps, T.: Interprocedural analysis of concurrent programs under a context bound. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 282–298. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  18. 18.
    Long, Z., Calin, G., Majumdar, R., Meyer, R.: Language-theoretic abstraction refinement. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 362–376. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  19. 19.
    Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer, Heidelberg (1999)CrossRefMATHGoogle Scholar
  20. 20.
    Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  21. 21.
    Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecidable. ACM Trans. Program. Lang. Syst. 22(2), 416–430 (2000)CrossRefGoogle Scholar
  22. 22.
    Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via graph reachability. In: POPL, pp. 49–61. ACM (1995)Google Scholar
  23. 23.
    Seidl, H., Wilhelm, R., Hack, S.: Compiler Design - Analysis and Transformation. Springer, Heidelberg (2012)CrossRefMATHGoogle Scholar
  24. 24.
    Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. Technical report 2, New York University (1978)Google Scholar
  25. 25.
    De Wulf, M., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Antichains: a new algorithm for checking universality of finite automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 17–30. Springer, Heidelberg (2006) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Brno University of TechnologyBrnoCzech Republic
  2. 2.University of KaiserslauternKaiserslauternGermany

Personalised recommendations