Advertisement

Performance Engineering for Industrial Embedded Data-Processing Systems

  • Martijn HendriksEmail author
  • Jacques Verriet
  • Twan Basten
  • Marco Brassé
  • Reinier Dankers
  • René Laan
  • Alexander Lint
  • Hristina Moneva
  • Lou Somers
  • Marc Willekens
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9459)

Abstract

Performance is a key aspect of many embedded systems, embedded data processing systems in particular. System performance can typically only be measured in the later stages of system development. To avoid expensive re-work in the final stages of development, it is essential to have accurate performance estimations in the early stages. For this purpose, we present a model-based approach to performance engineering that is integrated with the well-known V-model for system development. Our approach emphasizes model accuracy and is demonstrated using five embedded data-processing cases from the digital printing domain. We show how lightweight models can be used in the early stages of system development to estimate the influence of design changes on system performance.

References

  1. 1.
    Amdahl, G.M.: Validity of the single processor approach to achieving large scale computing capabilities. In: AFIPS spring joint computer conference (1967)Google Scholar
  2. 2.
    Balarin, F., et al.: Hardware-Software Co-design of Embedded Systems: The POLIS Approach. Kluwer, Norwell (1997)zbMATHCrossRefGoogle Scholar
  3. 3.
    Balsamo, S., di Marco, A., Inverardi, P., Simeoni, M.: Model-based performance prediction in software development: a survey. IEEE Trans. Softw. Eng. 30(5), 295–310 (2004)CrossRefGoogle Scholar
  4. 4.
    Beckers, J.M.J., Muller, G.J., Heemels, W.P.H., Bukkems, B.H.M.: Effective industrial modeling for high-tech systems: the example of happy flow. In: INCOSE International Symposium, vol. 17, issue 1 (2007)Google Scholar
  5. 5.
    Bohlin, T.P.: Practical Grey-box Process Identification: Theory and Applications. Springer, Berlin (2015)Google Scholar
  6. 6.
    Eclipse Foundation: Eclipse website (2015). http://www.eclipse.org/
  7. 7.
    Embedded Systems Innovation by TNO: Trace website (2015). http://trace.esi.nl
  8. 8.
    Fishman, G.S.: Discrete-Event Simulation: Modeling, Programming, and Analysis. Springer, New York (2001)CrossRefGoogle Scholar
  9. 9.
    Forsberg, K., Mooz, H.: The relationship of system engineering to the project cycle. In: INCOSE International Symposium, vol. 1, issue 1 (1991)Google Scholar
  10. 10.
    Hendriks, M., et al.: A blueprint for system-level performance modeling of software-intensive embedded systems. Int. J. Softw. Tools Technol, Transfer (2014)Google Scholar
  11. 11.
    Hendriks, M. et al.: Analyzing execution traces - critical-path analysis and distance analysis. Submitted to STTT (2015)Google Scholar
  12. 12.
    Kruchten, P.B.: The \(4+1\) view model of architecture. IEEE Softw. 12(6), 42–50 (1995)CrossRefGoogle Scholar
  13. 13.
    Montgomery, D.C., Peck, E.A., Vining, G.G.: Introduction to Linear Regression Analysis, 3rd edn. Wiley, New York (2001)zbMATHGoogle Scholar
  14. 14.
    Muller, G.J.: CAFCR: a multi-view method for embedded systems architecting; balancing genericity and specificity. Ph.D. thesis, Delft University of Technology (2004)Google Scholar
  15. 15.
    Mussbacher, G., Amyot, D., Breu, R., Bruel, J.-M., Cheng, B.H.C., Collet, P., Combemale, B., France, R.B., Heldal, R., Hill, J., Kienzle, J., Schöttle, M., Steimann, F., Stikkolorum, D., Whittle, J.: The Relevance of Model-Driven Engineering Thirty Years from Now. In: Dingel, J., Schulte, W., Ramos, I., Abrah\ {a}o, S., Insfran, E. (eds.) MODELS 2014. LNCS, vol. 8767, pp. 183–200. Springer, Heidelberg (2014) Google Scholar
  16. 16.
    Parappurath, V.V., Voeten, J.P.M., Kotterink, K.C.: Calibration error bound estimation in performance modeling. In: Euromicro Conference on Digital System Design (2013)Google Scholar
  17. 17.
    PassMark Software: CPU Mark - Single Thread Performance (2015). https://www.cpubenchmark.net/singleThread.html
  18. 18.
    Pimentel, A.D., Thompson, M., Polstra, S., Erbas, C.: Calibration of abstract performance models for system-level design space exploration. J. Signal Process. Syst. 50(2), 99–114 (2008)CrossRefGoogle Scholar
  19. 19.
    Smith, C.U., Williams, L.G.: Software performance engineering. In: Lavagno, L., Martin, G., Selic, B. (eds.) UML for Real: Design of Embedded Real-Time Systems, pp. 343–365. Springer, Heidelberg (2003)Google Scholar
  20. 20.
    Voeten, J. et al.: Predicting timing performance of advanced mechatronics control systems. In: IEEE 35th Annual Computer Software and Applications Conference Workshops (COMPSACW) (2011)Google Scholar
  21. 21.
    Westland, J.C.: The cost of errors in software development: evidence from industry. J. Syst. Softw. 62, 1–9 (2002)CrossRefGoogle Scholar
  22. 22.
    Williams, L.G., Smith, C.U.: Making the business case for software performance engineering. In: 29th International Computer Measurement Group Conference. pp. 349–358. Computer Measurement Group (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Martijn Hendriks
    • 1
    Email author
  • Jacques Verriet
    • 1
  • Twan Basten
    • 1
    • 3
  • Marco Brassé
    • 2
  • Reinier Dankers
    • 2
  • René Laan
    • 2
  • Alexander Lint
    • 2
  • Hristina Moneva
    • 1
  • Lou Somers
    • 2
    • 3
  • Marc Willekens
    • 1
  1. 1.Embedded Systems Innovation by TNOEindhovenThe Netherlands
  2. 2.Océ Technologies B.V.VenloThe Netherlands
  3. 3.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations