International Conference on Theory and Practice of Natural Computing

Theory and Practice of Natural Computing pp 33-45 | Cite as

A Genetic Algorithm for Evolving Plateaued Cryptographic Boolean Functions

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9477)

Abstract

We propose a genetic algorithm (GA) to search for plateaued boolean functions, which represent suitable candidates for the design of stream ciphers due to their good cryptographic properties. Using the spectral inversion technique introduced by Clark, Jacob, Maitra and Stanica, our GA encodes the chromosome of a candidate solution as a permutation of a three-valued Walsh spectrum. Additionally, we design specialized crossover and mutation operators so that the swapped positions in the offspring chromosomes correspond to different values in the resulting Walsh spectra. Some tests performed on the set of pseudoboolean functions of \(n=6\) and \(n=7\) variables show that in the former case our GA outperforms Clark et al.’s simulated annealing algorithm with respect to the ratio of generated plateaued boolean functions per number of optimization runs.

Keywords

Evolutionary computing Cryptography Genetic algorithms Simulated annealing Boolean functions Walsh transform Spectral inversion Nonlinearity Resiliency 

References

  1. 1.
    Burnett, L., Millan, W., Dawson, E., Clark, A.: Simpler methods for generating better boolean functions with good cryptographic properties. Australas. J. Combin. 29, 231–248 (2004)MathSciNetMATHGoogle Scholar
  2. 2.
    Carlet, C.: Boolean functions for cryptography and error-correcting codes. In: Crama, Y., Hammer, P.L. (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering, pp. 257–397. Cambridge University Press, New York (2011)Google Scholar
  3. 3.
    Clark, J.A., Jacob, J.L., Maitra, S., Stanica, P.: Almost boolean functions: the design of boolean functions by spectral inversion. Comput. Intell. 20(3), 450–462 (2004)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Clark, J.A., Jacob, J.L., Stepney, S., Maitra, S., Millan, W.L.: Evolving boolean functions satisfying multiple criteria. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002. LNCS, vol. 2551, pp. 246–259. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  5. 5.
    Goldberg, D.E., Lingle, R.: Alleles, loci and the traveling salesman problem. In: Grefenstette, J.J. (ed.) Proceedings of the 1st International Conference on Genetic Algorithms, pp. 154–159, Lawrence Erlbaum Associates (1985)Google Scholar
  6. 6.
    Mariot, L., Leporati, A.: Heuristic search by particle swarm optimization of boolean functions for cryptographic applications. In: Laredo, J.L.J., Silva, S., Esparcia-Alcázar, A.I. (eds.) Genetic and Evolutionary Computation Conference, GECCO 2015, Companion Material Proceedings, pp. 1425–1426, ACM (2015)Google Scholar
  7. 7.
    Millan, W.L., Clark, A.J., Dawson, E.: Heuristic design of cryptographically strong balanced boolean functions. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 489–499. Springer, Heidelberg (1998) CrossRefGoogle Scholar
  8. 8.
    Nawa, N.E., Furuhashi, T.: Fuzzy system parameters discovery by bacterial evolutionary algorithm. IEEE Trans. Fuzzy Syst. 7(5), 608–616 (1999)CrossRefGoogle Scholar
  9. 9.
    Picek, S., Jakobovic, D., Golub, M.: Evolving cryptographically sound boolean functions. In: Blum, C., Alba, E. (eds.) Genetic and Evolutionary Computation Conference, GECCO 2013, Companion Material Proceedings, pp. 191–192, ACM (2013)Google Scholar
  10. 10.
    Picek, S., Jakobovic, D., Miller, J.F., Marchiori, E., Batina, L.: Evolutionary methods for the construction of cryptographic boolean functions. In: Machado, P., Heywood, M.I., McDermott, J., Castelli, M., García-Sánchez, P., Burelli, P., Risi, S., Sim, K. (eds.) EuroGP 2015. LNCS, vol. 9025, pp. 192–204. Springer, Switzerland (2015)Google Scholar
  11. 11.
    Siegenthaler, T.: Correlation-immunity of nonlinear combining functions for cryptographic applications. IEEE Trans. Inf. Theory 30(5), 776–780 (1984)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Tarannikov, Y.V.: On resilient boolean functions with maximal possible nonlinearity. In: Roy, B., Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977, pp. 19–30. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  13. 13.
    Yao, X.: Optimization by genetic annealing. In: Proceedings of the Second Australian Conference on Neural Networks, pp. 94–97, Sydney Univ. Electr. Eng (1991)Google Scholar
  14. 14.
    Zheng, Y., Zhang, X.-M.: Plateaued functions. In: Varadharajan, V., Mu, Y. (eds.) ICICS 1999. LNCS, vol. 1726, pp. 284–300. Springer, Heidelberg (1999) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Dipartimento di Informatica, Sistemistica e ComunicazioneUniversità degli Studi Milano - BicoccaMilanoItaly

Personalised recommendations