International Conference on Mining Intelligence and Knowledge Exploration

Mining Intelligence and Knowledge Exploration pp 81-92

Extending and Tuning Heuristics for a Partial Order Causal Link Planner

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9468)

Abstract

Recent literature reveals that different heuristic functions perform well in different domains due to the varying nature of planning problems. This nature is characterized by the degree of interaction between subgoals and actions. We take the approach of learning the characteristics of different domains in a supervised manner. In this paper, we employ a machine learning approach to combine different, possibly inadmissible, heuristic functions in a domain dependent manner. With the renewed interest in Partial Order Causal Link (POCL) planning we also extend the heuristic functions derived from state space approaches to POCL planning. We use Artificial Neural Network (ANN) for combining these heuristics. The goal is to allow a planner to learn the parameters to combine heuristic functions in a given domain over time in a supervised manner. Our experiments demonstrate that one can discover combinations that yield better heuristic functions in different planning domains.

Keywords

Learning ANN POCL planning Graphplan Heuristic Admissibility PE-ANN VHPOP Satisficing planning 

References

  1. 1.
    Arfaee, S.J., Zilles, S., Holte, R.C.: Learning heuristic functions for large state spaces. Artif. Intell. 175(16), 2075–2098 (2011)MATHCrossRefGoogle Scholar
  2. 2.
    Barrett, A., Weld, D.S.: Partial-order planning: evaluating possible efficiency gains. Artif. Intell. 67(1), 71–112 (1994)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Bishop, C.M.: Pattern Recognition and Machine Learning, vol. 1. Springer, New York (2006)MATHGoogle Scholar
  4. 4.
    Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. Artif. Intell. 90(1), 281–300 (1997)MATHCrossRefGoogle Scholar
  5. 5.
    Bonet, B., Geffner, H.: Planning as heuristic search. Artif. Intell. 129(1), 5–33 (2001)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Bonet, B., Loerincs, G., Geffner, H.: A robust and fast action selection mechanism for planning. In: AAAI/IAAI, pp. 714–719 (1997)Google Scholar
  7. 7.
    Haslum, P., Geffner, H.: Admissible heuristics for optimal planning. In: AIPS, pp. 140–149. Citeseer (2000)Google Scholar
  8. 8.
    Hastie, T., Tibshirani, R., Friedman, J., Hastie, T., Friedman, J., Tibshirani, R.: The Elements of Statistical Learning, vol. 2. Springer, New York (2009)MATHCrossRefGoogle Scholar
  9. 9.
    Helmert, M.: The fast downward planning system. J. Artif. Intell. Res. (JAIR) 26, 191–246 (2006)MATHCrossRefGoogle Scholar
  10. 10.
    Hoffmann, J.: FF : the fast-forward planning system. AI Mag. 22(3), 57 (2001)Google Scholar
  11. 11.
    Kambhampati, S., Parker, E., Lambrecht, E.: Understanding and extending graphplan, pp. 260–272 (1997)Google Scholar
  12. 12.
    Korf, R.E.: Depth-first iterative-deepening: an optimal admissible tree search. Artif. Intell. 27(1), 97–109 (1985)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    McAllester, D., Rosenblatt, D.: Systematic nonlinear planning (1991)Google Scholar
  14. 14.
    Mitchell, T.M.: Machine learning and data mining. Commun. ACM 42(11), 30–36 (1999). http://doi.acm.org/10.1145/319382.319388 CrossRefGoogle Scholar
  15. 15.
    Muise, C., McIlraith, S.A., Beck, J.C.: Monitoring the execution of partial-order plans via regression. In: IJCAI Proceedings-International Joint Conference on Artificial Intelligence, vol. 22, p. 1975 (2011)Google Scholar
  16. 16.
    Nguyen, X., Kambhampati, S.: Extracting effective and admissible state space heuristics from the planning graph. In: AAAI/IAAI, pp. 798–805 (2000)Google Scholar
  17. 17.
    Nguyen, X., Kambhampati, S.: Reviving partial order planning. In: IJCAI, vol. 1, pp. 459–464 (2001)Google Scholar
  18. 18.
    Nigenda, R.S., Nguyen, X., Kambhampati, S.: Altalt: combining the advantages of graphplan and heuristic state search (2000)Google Scholar
  19. 19.
    Pearl, J.: Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley, Reading (1984)Google Scholar
  20. 20.
    Penberthy, J.S., Weld, D.S.: UCPOP: A sound, complete, partial order planner for adl, pp. 103–114. Morgan Kaufmann (1992)Google Scholar
  21. 21.
    Ridder, B.: Lifted Heuristics: Towards More Scalable Planning Systems. Ph.D. thesis, King’s College London (University of London) (2014)Google Scholar
  22. 22.
    Ridder, B., Fox, M.: Heuristic evaluation based on lifted relaxed planning graphs. In: Proceedings of the Twenty-Fourth International Conference on Automated Planning and Scheduling, ICAPS 2014, Portsmouth, New Hampshire, USA, 21–26 June 2014. http://www.aaai.org/ocs/index.php/ICAPS/ICAPS14/paper/view/7948
  23. 23.
    Röger, G., Helmert, M.: Combining heuristic estimators for satisficing planning. In: ICAPS 2009 Workshop on Heuristics for Domain-Independent Planning, pp. 43–48 (2009)Google Scholar
  24. 24.
    Röger, G., Helmert, M.: The more, the merrier: combining heuristic estimators for satisficing planning. Alternation 10(100s), 1000s (2010)Google Scholar
  25. 25.
    Samadi, M., Felner, A., Schaeffer, J.: Learning from multiple heuristics. In: AAAI, pp. 357–362 (2008)Google Scholar
  26. 26.
    Sapena, O., Onaindıa, E., Torreno, A.: Combining heuristics to accelerate forward partial-order planning. In: Constraint Satisfaction Techniques for Planning and Scheduling, P. 25 (2014)Google Scholar
  27. 27.
    Schubert, L., Gerevini, A.: Accelerating partial order planners by improving plan and goal choices. In: Proceedings of Seventh International Conference on Tools with Artificial Intelligence, pp. 442–450. IEEE (1995)Google Scholar
  28. 28.
    Smith, D.E., Peot, M.A.: Postponing threats in partial-order planning. In: Proceedings of the Eleventh National Conference on Artificial Intelligence, pp. 500–506. AAAI Press (1993)Google Scholar
  29. 29.
    Thayer, J.T., Dionne, A.J., Ruml, W.: Learning inadmissible heuristics during search. In: ICAPS (2011)Google Scholar
  30. 30.
    Thayer, J.T., Ruml, W.: Using distance estimates in heuristic search. In: ICAPS, pp. 382–385. Citeseer (2009)Google Scholar
  31. 31.
    Weld, D.S.: An introduction to least commitment planning. AI Mag. 15(4), 27 (1994)Google Scholar
  32. 32.
    Weld, D.S.: AAAI-10 classic paper award: systematic nonlinear planning a commentary. AI Mag. 32(1), 101 (2011)Google Scholar
  33. 33.
    Younes, H.L., Simmons, R.G.: On the role of ground actions in refinement planning. In: AIPS, pp. 54–62 (2002)Google Scholar
  34. 34.
    Younes, H.L., Simmons, R.G.: Versatile heuristic partial order planner. J. Artif. Intell. Res. (JAIR) 20, 405–430 (2003)MATHGoogle Scholar
  35. 35.
    Zhu, L., Givan, R.: Simultaneous heuristic search for conjunctive subgoals. In: 1999 Proceedings of the National Conference on Artificial Intelligence (AAAI), vol. 20, pp. 1235–1241. AAAI Press, MIT Press, Menlo Park, Cambridge (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations