International Conference on Mining Intelligence and Knowledge Exploration

Mining Intelligence and Knowledge Exploration pp 1-11

Spreading Activation Way of Knowledge Integration

  • Shubhranshu Shekhar
  • Sutanu Chakraborti
  • Deepak Khemani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9468)

Abstract

Search and recommender systems benefit from effective integration of two different kinds of knowledge. The first is introspective knowledge, typically available in feature-theoretic representations of objects. The second is external knowledge, which could be obtained from how users rate (or annotate) items, or collaborate over a social network. This paper presents a spreading activation model that is aimed at a principled integration of these two sources of knowledge. In order to empirically evaluate our approach, we restrict the scope to text classification tasks, where we use the category knowledge of the labeled set of examples as an external knowledge source. Our experiments show a significantly improved classification effectiveness on hard datasets, where feature value representations, on their own, are inadequate in discriminating between classes.

References

  1. 1.
    Anderson, J.R.: A spreading activation theory of memory. Journal of Verbal Learning and Verbal Behavior 22(3), 261–295 (1983)CrossRefGoogle Scholar
  2. 2.
    Balaraman, V., Chakraborti, S.: Satisfying varying retrieval requirements in case based intelligent directory assistance. In: FLAIRS Conference, pp. 160–165 (2004)Google Scholar
  3. 3.
    Berthold, M.R., Brandes, U., Kötter, T., Mader, M., Nagel, U., Thiel, K.: Pure spreading activation is pointless. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management, pp. 1915–1918. ACM (2009)Google Scholar
  4. 4.
    Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: Proceedings of the Eleventh Annual Conference on Computational Learning Theory, pp. 92–100. ACM (1998)Google Scholar
  5. 5.
    Calado, P., Cristo, M., Moura, E., Ziviani, N., Ribeiro-Neto, B., Gonçalves, M.A.: Combining link-based and content-based methods for web document classification. In: Proceedings of the Twelfth International Conference on Information and Knowledge Management, pp. 394–401. ACM (2003)Google Scholar
  6. 6.
    Chakrabarti, S.: Mining the Web: Discovering Knowledge from Hypertext Data. Elsevier, San Francisco (2002)Google Scholar
  7. 7.
    Chakraborti, S., Cerviño Beresi, U., Wiratunga, N., Massie, S., Lothian, R., Khemani, D.: Visualizing and evaluating complexity of textual case bases. In: Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS (LNAI), vol. 5239, pp. 104–119. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  8. 8.
    Collins, A.M., Loftus, E.F.: A spreading-activation theory of semantic processing. Psychol. Rev. 82(6), 407 (1975)CrossRefGoogle Scholar
  9. 9.
    Crestani, F.: Application of spreading activation techniques in information retrieval. Artif. Intell. Rev. 11(6), 453–482 (1997)CrossRefGoogle Scholar
  10. 10.
    Fdez-Riverola, F., Iglesias, E.L., Díaz, F., Méndez, J.R., Corchado, J.M.: Applying lazy learning algorithms to tackle concept drift in spam filtering. Expert Syst. Appl. 33(1), 36–48 (2007)CrossRefGoogle Scholar
  11. 11.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. JHU Press, Baltimore (2012) Google Scholar
  12. 12.
    Joachims, T.: Text categorization with support vector machines: learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398. Springer, Heidelberg (1998) Google Scholar
  13. 13.
    Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann, San Mateo (2014) Google Scholar
  14. 14.
    Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. John Wiley & Sons, Chichester (2004) CrossRefGoogle Scholar
  15. 15.
    Lenz, M., Burkhard, H.D.: Case retrieval nets: basic ideas and extensions. In: Görz, G., Hölldobler, S. (eds.) KI 1996. LNCS, vol. 1137. Springer, Heidelberg (1996) Google Scholar
  16. 16.
    Lenz, M., Burkhard, H.D.: CBR for document retrieval: the fallq project. In: Leake, D.B., Plaza, E. (eds.) Case-Based Reasoning Research and Development. Lecture Notes in Computer Science, vol. 1266, pp. 84–93. Springer, Berlin Heidelberg (1997)CrossRefGoogle Scholar
  17. 17.
    Lu, Q., Getoor, L.: Link-based classification. In: ICML, vol. 3, pp. 496–503 (2003)Google Scholar
  18. 18.
    Qi, X., Davison, B.D.: Knowing a web page by the company it keeps. In: Proceedings of the 15th ACM International Conference on Information and Knowledge Management, pp. 228–237. ACM (2006)Google Scholar
  19. 19.
    Quillian, M.: Semantic memory. Semantic information processing (1968)Google Scholar
  20. 20.
    Shekhar, S., Chakraborti, S., Khemani, D.: Linking cases up: an extension to the case retrieval network. In: Lamontagne, L., Plaza, E. (eds.) ICCBR 2014. LNCS, vol. 8765, pp. 450–464. Springer, Heidelberg (2014) Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Shubhranshu Shekhar
    • 1
  • Sutanu Chakraborti
    • 1
  • Deepak Khemani
    • 1
  1. 1.Department of Computer Science and EngineeringIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations