Applications of the Rare Earths

  • J. H. L. VonckenEmail author
Part of the SpringerBriefs in Earth Sciences book series (BRIEFSEARTH)


This chapter gives an overview of the most important applications of the rare earth elements. The number applications discussed is large, but not exhaustive. Among those treated are catalysts, metal alloys, HT-superconductors, batteries, phosphors, glass, glass-polishing agents, permanent magnets, pigments, nuclear-control rods, photographic filters, lasers, and the scintillation crystals used in PET-scanners. The permanent magnets have themselves a large number of different applications, which are listed in this chapter.


Holmium Laser Spindle Motor Voice Coil Motor Cerium Dioxide Neodymium Magnet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allen DW (2007) Holmium oxide glass wavelength standards. J Res Natl Inst Stand Technol 112:303–306CrossRefGoogle Scholar
  2. Asami K, Kusakabe K, Ashi N, Ohtsuka Y (1997) Synthesis of ethane and ethylene from methane and carbon dioxide over praseodymium oxide catalysts. App Catal A: General 156:43–56CrossRefGoogle Scholar
  3. Bednorz JG, Müller KA (1986) Possible high T c superconductivity in the Ba–La–Cu–O system. Z Phys B: Condens. Matter 64:189–193CrossRefGoogle Scholar
  4. Brown D, Ma B-M, Chen Z (2002) Developments in the processing and properties of NdFeB-type permanent magnets. J. Mag Magnet Mater 248:432–440CrossRefGoogle Scholar
  5. Caro P (1998) Rare earths in luminescence. In: Saez R, Caro P (eds) Rare Earths. Editorial Complutense, SA, pp 323–325Google Scholar
  6. Chen Z, Luo J, Guo Z (2010) Effect of Dy substitution on the microstructure and magnetic properties of nanograin Nd-Fe-B single-phase alloys. Int J Min Metall Mater 17(3):335–339CrossRefGoogle Scholar
  7. Cheng CH, Hsu HH, Chen WB, Chin A, Yeh FS (2010) Characteristics of cerium oxide for metal–insulator–metal capacitors. Solid-State Lett 13(1):H16–H19CrossRefGoogle Scholar
  8. Curtis N (2010) Rare earths, we touch them every day. In: Lynas Presentation at the JP Morgan Australia Corporate Access Days, New York, 27–28 Sept 2010Google Scholar
  9. Daghighian F, Shenderov P, Pentlow KS, Graham MC, Eshaghian B, Melcher CL, Schweitzer JS (1993) Evaluation of cerium doped lutetium oxy-orthosilicate (LSO)scintillation crystal for PET. IEEE Trans Nucl Sci 40(4):1045–1047CrossRefGoogle Scholar
  10. Del Nero G, Cappelletti G, Ardizzone S, Fermo P, Gilardoni S (2004) Yellow Pr-zircon pigments—the role of praseodymium and of the mineralizer. J Eur Ceram Soc 24:3603–3611CrossRefGoogle Scholar
  11. Dhakal DR, Namkung S, Lee M-W, Jang T-S (2014) Effect of dysprosium-compounds treatment on coercivity of Nd-Fe-B sintered magnets. Curr Nanosci 10:28–31Google Scholar
  12. Drak M, Dobrzański LA (2007) Corrosion of Nd-Fe-B permanent magnets. J Achiev Mater Manuf Eng 20(1–2):239–242Google Scholar
  13. Encyclopaedia Britannica online (2015)
  14. Emsley J (2001) Nature’s building blocks: an A-Z guide to the elements. Oxford University Press, Oxford, 538 ppGoogle Scholar
  15. Gendre MF (2003) Two centuries of electric light source innovations. URL:, 12 pp
  16. Geschneider Jr KA (2005) Physical properties of the rare Earth metals. In: Lide DR (ed) CRC handbook of chemistry and physics, 95th edn. CRC Press, Boca Raton, FL, 4.118Google Scholar
  17. Geusic JE, Marcos HM, van Uitert LG (1964) Laser oscillations in Nd-doped yttrium aluminum, gallium and gadolinium garnets. Appl Phys Lett 4(10):182–184CrossRefGoogle Scholar
  18. Girard P, Namy JL, Kagan HB (1980) Divalent lanthanide derivatives in organic synthesis. 1. Mild preparation of SmI2 and YbI2 and their use as reducing or coupling agents. J Am Chem Soc 102(8):2693–2698CrossRefGoogle Scholar
  19. Gupta CK, Krishnamurthy N (2005) Extractive metallurgy of the rare earths. CRC Press, Boca Raton, p 31Google Scholar
  20. Hammond CR (2015) The elements. In: Haynes WM, Bruno TJ, Lide DR(eds) CRC handbook of chemistry and physics, 96th edn, Internet Version. CRC Press, Boca Raton, Section 4, pp 1–36Google Scholar
  21. Herbst JF, Croat JJ (1991) Neodymium-iron-boron permanent magnets. J Magn Magn Mater 100:57–78CrossRefGoogle Scholar
  22. Hinkley N, Sherman JA, Phillips NB, Schioppo M, Lemke ND, Beloy K, Pizzocaro M, Oates CW, Ludlow AD (2013) Science express, 22 Aug 2013, 3 ppGoogle Scholar
  23. Hirosawa S, Matsuura Y, Yamamoto H, Fujimura S, Sagawa M, Yamauchi H (1986) Magnetization and magnetic anisotropy of R2Fe14B measured on single crystals. J Appl Phys 59(3):873–879CrossRefGoogle Scholar
  24. Hirota K, Nakamura H, Minowa T, Honshima M (2006) Coercivity enhancement by the grain boundary diffusion process to Nd-Fe-B sintered magnets. IEEE Trans Magn 42(10):2909–2911CrossRefGoogle Scholar
  25. Hoard RW, Mance SC, Leber RL, Dalder EN, Chaplin MR, Blair K, Nelson DH, Van Dyke DA (1985) Field enhancement of a 12.5 T magnet using Holmium poles. IEEE Trans Magn 21(2):448–450Google Scholar
  26. Jha A, Naftalyt M, Jorderyt S, Samson BN, Taylor ER, Hewakl D, Paynex D.N., Poulain, M., Zhangs, G. (1995) Design and fabrication of Pr3+-doped fluoride glass optical fibres for efficient 1.3 micrometer amplifiers. Pure Appl Opt 4:417–424Google Scholar
  27. Jones RL (1997) Some aspects of the hot corrosion of thermal barrier coating. J Therm Spray Technol 6(1):77–84CrossRefGoogle Scholar
  28. Kharton VV, Figueiredo FM, Navarro L, Naumovich EN, Kovalevsky AV, Yaremchenko AA, Viskup AP, Carneiro A, Marques FMB, Frade JR (2001) Ceria-based materials for solid oxide fuel cells. J Mat Sci 36:1105–1117CrossRefGoogle Scholar
  29. Kim AS, Camp FE, Stadelmaier HH (1994) Relation of remanence and coercivity of Nd, (Dy)-Fe,(Co)-B sintered permanent magnets to crystallite orientation. J Appl Phys 76:6265–6267CrossRefGoogle Scholar
  30. Koechner W (2006) Solid-state laser engineering. Springer Science+Business Media, Inc., p 49Google Scholar
  31. Lehmann W, Isaacs ThJ (1978) Lanthanum and yttrium halo-silicate phosphors. J Electrochem Soc: Solid State Sci Technol 445–448Google Scholar
  32. Li X, Yang Z, Guan L, Guo Q (2009) A new yellowish green luminescent material SrMoO4:Tb3+. Mat Lett 63:1096–1098CrossRefGoogle Scholar
  33. Melcher CL (1990) Lutetium orthosilicate single crystal scintillator detector. US Patent 4,958,080Google Scholar
  34. Muresan L, Stefan M, Bica E, Morar M, Indrea E, Popovici EJ (2010) Spectral investigations of cerium activated yttrium silicate blue emitting phosphor. J Optoelectr Adv Mat—Symp 2(1):131–135Google Scholar
  35. Nazarov MV, Jeon DY, Kang JH, Popovici E-J, Muresan L-E, Zamoryanskaya MV, Tsukerblat BS (2004) Luminescence properties of europium–terbium double activated calcium tungstate phosphor. Solid State Commun 131:307–311CrossRefGoogle Scholar
  36. Nazeri PP, Trzaskoma-Paulette PP, Bauer D (1997) Synthesis and properties of cerium and titanium oxide thin coatings for corrosion protection of 304 stainless steel. J Sol-Gel Sci Technol 10:317–331CrossRefGoogle Scholar
  37., 2015Google Scholar
  38. Optiglass Limited (2015) Starna®, certified reference materials for UV and visible spectroscopy. Accessed Mar 2015Google Scholar
  39. Preisler EJ (2003) Investigation of novel semiconductor heterostructure systems—I: Cerium oxide/silicon heterostructures—II: 6.1 Å semiconductor-based avalanche photodiodes. PhD thesis, California Institute of Technology, 168 ppGoogle Scholar
  40. Rokhlin LL (2003) Magnesium alloys containing rare earth metals. Advances in metallic alloys, vol 3. CRC Press, Cleveland, 256 ppGoogle Scholar
  41. Royal Society of Chemistry (2011) Accessed Mar 2015
  42. Royal Society of Chemistry (2015) Accessed Mar 2015
  43. (2015) Accessed Mar 2015
  44. Sherry AD, Caravan P, Lekinsky RE (2009) Primer on gadolinium chemistry. J Magn Reson Imaging 30:1240–1248CrossRefGoogle Scholar
  45. Smith GP (1967) Photochromic glasses: properties and applications. J Mat Sci 2(2):139–152Google Scholar
  46. Strnat K, Hoffer G, Olson J, Ostertag W, Becker JJ (1967) A family of new cobalt-based permanent magnet materials. J Appl Phys 38(3):1001–1002CrossRefGoogle Scholar
  47. Vinogradova NN, Dmitruk LN, Petrova OB (2004) Glass transition and crystallization of glasses based on rare-earth borates. Glass Phys Chem 30(1):1–5CrossRefGoogle Scholar
  48. Wickersheim KA, Lefever RA (1964) Luminescent behavior of the rare earths in yttrium oxide and related compounds. J Electrochem Soc 111:47–51CrossRefGoogle Scholar
  49. Wu MK, Ashburn JR, Torng CJ, Hor PH, Meng RL, Gao L, Huang ZJ, Wang YQ, Chu CW (1987) Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys Rev Lett 58(9):908–910CrossRefGoogle Scholar
  50. Yung Y, Bruno K (2012) Low rare earth catalysts for FCC Operations. Pet Technol Q 1–10.
  51. Yuriditsky B (2003) The crystallization mechanism of cerium-opacified enamels. In: Faust WD (ed) 65th Porcelain Enamel Institute Technical Forum: ceramic engineering and science proceedings, vol 24. Wiley, Hoboken, p 5. doi: 10.1002/9780470294840.ch16 Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Civil Engineering and GeosciencesDelft University of TechnologyDelftThe Netherlands

Personalised recommendations