Epichloë Fungal Endophytes for Grassland Ecosystems

  • David E. Hume
  • Geraldine D. Ryan
  • Anaïs Gibert
  • Marjo Helander
  • Aghafakhr Mirlohi
  • Mohammad R. Sabzalian
Part of the Sustainable Agriculture Reviews book series (SARV, volume 19)


The Epichloë fungal endophytes that inhabit grasses have potentially large-scale consequences for macro- and micro-organisms and food chains in agriculture. Over 40 years of study on the benefits of symbiotic Epichloë fungal endophytes for host grasses, investigations have focused on the major agricultural species, tall fescue and perennial ryegrass. However, many other grass species remain to be evaluated for the effects of Epichloë endophytes. Animal toxicity due to accumulation of nitrogenous compounds, e.g. endophyte-dervived alkaloids, particularly in areas and periods under abiotic stress, still prevent widespread application of endophyte-infected grasses in agroecosystems.

Here we review Epichloë endophyte-ecosystem relationships. The major points are: (1) Epichloë endophytes protect their host plants from vertebrate and invertebrate herbivory and allow plants to persist under water shortage, salinity, low light, mineral deficiencies and metal toxicity. Data suggests that the concentration of endophyte-derived anti-herbviore compounds increases with rising temperatures. This trend thus suggests that the strength of mutualistic interactions may increase in future climates with possible consequences for animal toxicity. (2) The benefits of endophyte infection for the host grass are context-dependent, varying with environmental conditions, grass species and cultivar, and are also highly influenced by interactions between both host and endophyte genetic combinations. (3) The benefits of fungal endophytes extend to neighboring grass species with respect to their protection from diseases and herbivores. (4) Novel grass-endophyte associations that produce alkaloids reducing herbivory insects, but do not produce alkaloids that are toxic to grazing vertebrates have been found. Such associations are therefore useful to control plant pests and diseases.


Agroecosystem Epichloë Endophyte Grassland 



The authors acknowledge a large number of colleagues whose scientific efforts contributed to this review. We specifically would like to acknowledge Mr. Lester Fletcher (AgResearch Ltd.) for his review and input into Sect. 6.2, and Dr. Alan Stewart (PGG Wrightson Seeds Ltd.) for his review and input into Sects. 6.2 and 6.7. We also thank Dr. John Waller, University of Tennessee, Knoxville, USA, Dr. Glen Aiken, USDA-ARS, Lexington, Kentucky, USA and Dr. Alison Popay, AgResearch Ltd., New Zealand who kindly shared their experiences and photos which were used in this manuscript.


  1. Afkhami ME (2012) Fungal endophyte-grass symbioses are rare in the California floristic province and other regions with Mediterranean-influenced climates. Fungal Ecol 5:345–352. doi: 10.1016/j.funeco.2011.09.006 CrossRefGoogle Scholar
  2. Ahlholm JU, Helander M, Lehtimäki S, Wäli P, Saikkonen K (2002) Vertically transmitted fungal endophytes: different responses of host-parasite systems to environmental conditions. Oikos 99:173–183. doi: 10.1034/j.1600-0706.2002.990118.x CrossRefGoogle Scholar
  3. Aiken GE, Strickland JR (2013) Forages and pastures symposium: managing the tall fescue-fungal endophyte symbiosis for optimum forage-animal production. J Anim Sci 91:2369–2378. doi: 10.2527/jas.2012-5948 PubMedCrossRefGoogle Scholar
  4. Aiken GE, Bransby DI, McCall CA (1993) Growth of yearling horses compared to steers on high – and low-endophyte infected tall fescue. J Equine Vet Sci 13:26–28. doi: 10.1016/S0737-0806(07)80013-X CrossRefGoogle Scholar
  5. Ainsworth EA, Rogers A, Leakey ABD (2008) Targets for crop biotechnology in a future high CO2 and high O3 world. Plant Physiol 147:13–19. doi: 10.1104/pp. 108.117101PubMedCentralPubMedCrossRefGoogle Scholar
  6. Al Rashed HA (2009) Evaluation of a novel endophyte-infected tall fescue cultivar as a safe forage for pregnant mares. Mississippi State University. http://gradworks.umi.com/14/70/1470465.html. Accessed UMI Number: 1470465 Masters of Science in Agricultural Life Sciences – Animal Physiology
  7. Alabdouli KO, Blythe LL, Duringer JM, Elkhouly A, Kassab A, Askar M, Mohammed EE, Al-Juboori A, Craig AM (2014) Physiological effects of endophyte-infected perennial ryegrass straw on female camels in the middle east. Emir J Food Agric 26:82–92. doi: 10.9755/ejfa.v26i1.16473 Google Scholar
  8. Aldrich-Markham S, Pirelli G, Craig AM (2003) Endophyte toxins in grass seed fields and straw effects on livestock. Oregon State University Extension Service, Corvallis, Oregon, p 4, EM 8598Google Scholar
  9. Annicchiarico P, Pecetti L, Bouzerzour H, Kallida R, Khedim A, Porqueddu C, Simões NM, Volaire F, Lelièvre F (2011) Adaptation of contrasting cocksfoot plant types to agricultural environments across the Mediterranean basin. Environ Exp Bot 74:82–89. doi: 10.1016/j.envexpbot.2011.05.002 CrossRefGoogle Scholar
  10. Antunes PM, Miller J, Carvalho LM, Klironomos JN, Newman JA (2008) Even after death the endophytic fungus of Schedonorus phoenix reduces the arbuscular mycorrhizas of other plants. Funct Ecol 22:912–918. doi: 10.1111/j.1365-2435.2008.01432.x CrossRefGoogle Scholar
  11. Arechavaleta M, Bacon CW, Plattner RD, Hoveland CS, Radcliffe DE (1992) Accumulation of ergopeptide alkaloids in symbiotic tall fescue grown under deficits of soil water and nitrogen fertilizer. Appl Environ Microbiol 58:857–861PubMedCentralPubMedGoogle Scholar
  12. Bacon CW (1995) Toxic endophyte-infected tall fescue and range grasses: historic perspectives. J Anim Sci 73:861–870. doi: 10.1186/1471-2105-7-439 PubMedGoogle Scholar
  13. Bacon CW, Porter JK, Robbins JD, Luttrell ES (1977) Epichloë typhina from toxic tall fescue grasses. Appl Environ Microbiol 34:576–581PubMedCentralPubMedGoogle Scholar
  14. Bacon CW, Richardson MD, White JF Jr (1997) Modification and uses of endophyte-enhanced turf grasses: a role for molecular technology. Crop Sci 37:1415–1425. doi: 10.2135/cropsci1997.0011183X003700050001x CrossRefGoogle Scholar
  15. Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JEG, Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, Symrnioudis I, Watt AD, Whittaker JB (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Chang Biol 8:1–16. doi: 10.1046/j.1365-2486.2002.00451.x CrossRefGoogle Scholar
  16. Ball OJ-P, Miles CO, Prestidge RA (1997) Ergopeptine alkaloids and Neotyphodium lolii-mediated resistance in perennial ryegrass against adult Heteronychus arator (Coleoptera: Scarabaeidae). J Econ Entomol 90:1382–1391CrossRefGoogle Scholar
  17. Ball OJ-P, Coudron TA, Tapper BA, Davies E, Trently D, Bush LP, Gwinn KD, Popay AJ (2006) Importance of host plant species, Neotyphodium endophyte isolate, and alkaloids on feeding by Spodoptera frugiperda (Lepidoptera : Noctuidae) larvae. J Econ Entomol 99:1462–1473. doi: 10.1603/0022-0493-99.4.1462 PubMedCrossRefGoogle Scholar
  18. Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:1–36. doi: 10.1080/07352680590910410 CrossRefGoogle Scholar
  19. Bazely DR, Vicari M, Emmerich S, Filip L, Lin D, Inman A (1997) Interactions between herbivores and endophyte-infected Festuca rubra from the Scottish islands of St. Kilda, Benbecula and Rum. J Appl Ecol 34:847–860. doi: 10.2307/2405276 CrossRefGoogle Scholar
  20. Beck PA, Stewart CB, Gunter SA, Singh D (2009) Evaluation of tall fescue for stocker cattle in the Gulf coastal plain. Prof Anim Sci 25:569–579Google Scholar
  21. Belesky DP, West CP (2009) Abiotic stresses and endophyte effects. In: Fribourg HA, Hannaway DB, West CP (eds) Tall fescue for the twenty-first century, vol 53, Agron monograph. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, pp 49–64Google Scholar
  22. Belesky DP, Stringer WC, Plattner RD (1989) Influence of endophyte and water regime upon tall fescue accessions. II. Pyrrolizidine and ergopeptine alkaloids. Ann Bot 64:343–349Google Scholar
  23. Belesky DP, Ruckle JM, Bush LP (2009) Microsite conditions influence nutritive value characteristics of a tall fescue cultivar devoid of, or infected with a native, or a novel non-ergogenic endophyte. Environ Exp Bot 67:284–292. doi: 10.1016/j.envexpbot.2009.07.008 CrossRefGoogle Scholar
  24. Bluett SJ, Thom ER, Clark DA, Macdonald KA, Minnee EMK (2005) Effects of perennial ryegrass infected with either AR1 or wild endophyte on dairy production in the Waikato. N Z J Agric Res 48:197–212. doi: 10.1080/00288233.2005.9513650 CrossRefGoogle Scholar
  25. Bony S, Delatour P (2001) Relevance and impact of grass endophyte toxins in Europe. In: Paul VH, Dapprich PD (eds) Fourth international Neotyphodium/grass interactions symposium. Universitat Paderborn, Soest, pp 207–218Google Scholar
  26. Botha CJ, Naude TW, Moroe ML, Rottinghaus GE (2004) Gangrenous ergotism in cattle grazing fescue (Festuca elatior L.) in South Africa. J S Afr Vet Assoc 75:45–48. doi: 10.4102/jsava.v75i1.449 PubMedCrossRefGoogle Scholar
  27. Bourke CA, Hunt E, Watson R (2009) Fescue-associated oedema of horses grazing on endophyte-inoculated tall fescue grass (Festuca arundinacea) pastures. Aust Vet J 87:492–498. doi: 10.1111/j.1751-0813.2009.00519.x PubMedCrossRefGoogle Scholar
  28. Bouton JH, Gates RN, Belesky DP, Owsley M (1993) Yield and persistence of tall fescue in the southeastern coastal plain after removal of its endophyte. Agron J 85:52–55. doi: 10.2134/agronj1993.00021962008500010011x CrossRefGoogle Scholar
  29. Bouton JH, Latch GCM, Hill NS, Hoveland CS, McCann MA, Watson RH, Parish JA, Hawkins LL, Thompson FN (2002) Reinfection of tall fescue cultivars with non-ergot alkaloid producing endophytes. Agron J 94:567–574. doi: 10.2134/agronj2002.0567 CrossRefGoogle Scholar
  30. Breen JP (1992) Temperature and seasonal effects on expression of Acremonium endophyte-enhanced resistance to Schizaphis graminum (Homoptera: Aphididae). Environ Entomol 21:68–74CrossRefGoogle Scholar
  31. Brilman LA (2005) Endophytes in turfgrass cultivars. In: Roberts C, West CP, Spiers D (eds) Neotyphodium in cool-season grasses. Blackwell Publishing, Ames, pp 341–349CrossRefGoogle Scholar
  32. Brosi GB, McCulley RL, Bush LP, Nelson JA, Classen AT, Norby RJ (2011) Effects of multiple climate change factors on the tall fescue–fungal endophyte symbiosis: infection frequency and tissue chemistry. New Phytol 189:797–805. doi: 10.1111/j.1469-8137.2010.03532.x PubMedCrossRefGoogle Scholar
  33. Bultman TL, Ganey DT (1995) Induced resistance to fall armyworm (Lepidoptera: Noctuidae) mediated by a fungal endophyte. Environ Entomol 24:1196–1200CrossRefGoogle Scholar
  34. Bultman TL, Borowicz KL, Schneble RM, Coudron TA, Bush LP (1997) Effect of a fungal endophyte on the growth and survival of two Euplectrus parasitoids. Oikos 78:170–176. doi: 10.2307/3545812 CrossRefGoogle Scholar
  35. Bultman TL, Bell G, Martin WD (2004) A fungal endophyte mediates reversal of wound-induced resistance and constrains tolerance in a grass. Ecology 85:679–685. doi: 10.1890/03-0073 CrossRefGoogle Scholar
  36. Burpee LL, Bouton JH (1993) Effect of eradication of the endophyte Acremonium coenophialum on epidemics of Rhizoctonia blight in tall fescue. Plant Dis 77:157–159CrossRefGoogle Scholar
  37. Bush LP, Fannin FF, Siegel MR, Dahlman DL, Burton HR (1993) Chemistry, occurrence and biological effects of pyrrolizidine alkaloids associated with endophyte-grass associations. Agric Ecosyst Environ 44:81–102. doi: 10.1016/0167-8809(93)90040-V CrossRefGoogle Scholar
  38. Bush LP, Wilkinson HH, Schardl CL (1997) Bioprotective alkaloids of grass-fungal endophyte symbioses. Plant Physiol 114:1–7. doi: 10.1016/j.funeco.2011.09.006 PubMedCentralPubMedGoogle Scholar
  39. Butendieck BN, Romero YO, Hazard TS, Mardones MP, Galdames GR (1994) Caida del consumo y produccion de leche en vacas alimentadas con Lolium perenne infectada con Acremonium lolii [Drop in intake and milk production of cows fed with Lolium perenne infected with Acremonium lolii]. Agric Tecnica (Santiago) 54:1–6Google Scholar
  40. Bylin AG, Hume DE, Card SD, Mace WJ, Lloyd-West CM, Huss-Danell K (2014) Influence of nitrogen fertilization on growth and loline alkaloid production of meadow fescue (Festuca pratensis) associated with the fungal symbiont Neotyphodium uncinatum. Botany 92:370–376. doi: 10.1139/cjb-2013-0253 CrossRefGoogle Scholar
  41. Cabral D, Cafaro MJ, Saidman B, Lugo M, Reddy PV, White JF Jr (1999) Evidence supporting the occurrence of a new species of endophyte in some South American grasses. Mycologia 91:315–325. doi: 10.2307/3761376 CrossRefGoogle Scholar
  42. Callaway RM, Delucia EH, Moore D, Nowak R, Schlesinger WH (1996) Competition and facilitation: contrasting effects of Artemisia tridentate on desert vs. montane pines. Ecology 77:2120–2214. doi: 10.2307/2265707 Google Scholar
  43. Caradus J, Lovatt S, Belgrave B (2013) Adoption of forage technologies by New Zealand farmers–case studies. In: Proceedings of the 22nd International Grassland Congress, New South Wales Department of Primary Industry, Sydney/Orange, pp 1843–1845Google Scholar
  44. Casas CM, Omacini MS, Montecchia OS (2011) Soil microbial community responses to the fungal endophyte Neotyphodium in Italian ryegrass. Plant Soil 340:347–355. doi: 10.1007/s11104-010-0607-8 CrossRefGoogle Scholar
  45. Chamberlain SA, Bronstein JL, Rudgers JA (2014) How context dependent are species interactions? Ecol Lett 17:881–890. doi: 10.1111/ele.12279 PubMedCrossRefGoogle Scholar
  46. Cheeke PR (1995) Endogenous toxins and mycotoxins in forage grasses and their effects on livestock. J Anim Sci 73:909–918PubMedGoogle Scholar
  47. Chen X, Tu C, Burton MG, Watson DM, Burkey KO, Hu S (2007) Plant nitrogen acquisition and interactions under elevated carbon dioxide: impact of endophytes and mycorrhizae. Glob Chang Biol 13:1238–1249. doi: 10.1111/j.1365-2486.2007.01347.x CrossRefGoogle Scholar
  48. Cheplick GP (2004) Recovery from drought stress in Lolium perenne (Poaceae): are fungal endophytes detrimental? Am J Bot 91:1960–1968. doi: 10.3732/ajb.91.12.1960 PubMedCrossRefGoogle Scholar
  49. Cheplick GP, Faeth S (2009) Ecology and evolution of the grass-endophyte symbiosis. Oxford University Press, New York. doi: 10.1093/acprof:oso/9780195308082.001.0001 CrossRefGoogle Scholar
  50. Christensen MJ (1996) Antifungal activity in grasses infected with Acremonium and Epichloë endophytes. Australas Plant Pathol 25:186–191. doi: 10.1071/AP96032 CrossRefGoogle Scholar
  51. Christensen MJ, Leuchtmann A, Rowan DD, Tapper BA (1993) Taxonomy of Acremonium endophytes of tall fescue (Festuca arundinacea), meadow fescue (Festuca pratensis) and perennial ryegrass (Lolium perenne). Mycol Res 97:1083–1092CrossRefGoogle Scholar
  52. Chu-Chou M, Guo B, An Z-Q, Hendrix JW, Ferriss RS, Siegel MR, Dougherty CT, Burrus PB (1992) Suppression of mycorrhizal fungi in fescue by the Acremonium coenophialum endophyte. Soil Biol Biochem 24:633–637. doi: 10.1016/0038-0717(92)90041-U CrossRefGoogle Scholar
  53. Clarke BB, White JF, Hurley RH, Torres MS, Sun S, Huff DR (2006) Endophyte-mediated suppression of dollar spot disease in fine fescues. Plant Dis 90:994–998. doi: 10.1094/PD-90-0994 CrossRefGoogle Scholar
  54. Clay K (1988) Fungal endophytes of grasses: a defensive mutualism between plants and fungi. Ecology 69:10–16. doi: 10.2307/1943155 CrossRefGoogle Scholar
  55. Clay K (2009) Defensive mutualism and grass endophytes: still valid after all these years? In: Torres M, White JF Jr (eds) Defensive mutualism in symbiotic association. CRC Press, Boca Raton, pp 9–20Google Scholar
  56. Clay K, Holah J (1999) Fungal endophyte symbiosis and plant diversity in successional fields. Science 285:1742–1744. doi: 10.1126/science.285.5434.1742 PubMedCrossRefGoogle Scholar
  57. Clay K, Schardl C (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:S99–S127. doi: 10.1086/342161 PubMedCrossRefGoogle Scholar
  58. Clay K, Rudgers JA, Shelton AL (2012) Tall fescue, endophyte infection and vegetation change: a 10-year experiment. In: Young CA, Aiken GE, McCulley RL, Strickland JR, Schardl CL (eds) Epichloae, endophytes of cool season grasses: implications, utilization and biology. The Samuel Roberts Noble Foundation, Ardmore, pp 89–93Google Scholar
  59. Clement SL, Elberson LR, Youssef NN, Davitt CM, Doss RP (2001) Incidence and diversity of Neotyphodium fungal endophytes in tall fescue from Morocco, Tunisia, and Sardinia. Crop Sci 41:570–576. doi: 10.2135/cropsci2001.412570x CrossRefGoogle Scholar
  60. Compant S, van der Heijden MGA, Sessitsch A (2010) Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiol Ecol 73:197–214. doi: 10.1111/j.1574-6941.2010.00900.x PubMedGoogle Scholar
  61. Craig AM (2009) Toxic effects of endophyte in seed straw. In: Fribourg HA, Hannaway DB, West CP (eds) Tall fescue for the twenty-first century, vol 53, Agron monograph. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, pp 327–335Google Scholar
  62. Cripps MG, Edwards GR, McKenzie SL (2013) Grass species and their fungal symbionts affect subsequent forage growth. Basic Appl Ecol 14:225–234. doi: 10.1016/j.baae.2013.01.008 CrossRefGoogle Scholar
  63. Cromey MG, Cole ALJ (1984) An association between a Lolium endophyte and Drechslere dictyoides. Trans Br Mycol Soc 83:159–161CrossRefGoogle Scholar
  64. Cross DL (2009) Toxic effects of the endophyte in horses. In: Fribourg HA, Hannaway DB, West CP (eds) Tall fescue for the twenty-first century, vol 53, Agron monograph. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, pp 311–325Google Scholar
  65. Cunningham PJ, Foot JZ, Reed KFM (1993) Perennial ryegrass (Lolium perenne) endophyte (Acremonium lolii) relationships: the Australian experience. Agric Ecosyst Environ 44:157–168. doi: 10.1016/0167-8809(93)90044-p CrossRefGoogle Scholar
  66. Dang X, Cao G, Duan D, Li S, Zhao X, Zhou J (1992) Studies on the toxic constituent of Achnatherum inebrians. Acta Vet Zootechn Sin 23:366–371 (in Chinese with English abstract)Google Scholar
  67. Davitt AJ, Stansberry M, Rudgers JA (2010) Do the costs and benefits of fungal endophyte symbiosis vary with light availability? New Phytol 188:824–834. doi: 10.1111/j.1469-8137.2010.03428.x PubMedCrossRefGoogle Scholar
  68. Davitt AJ, Chen C, Rudgers JA (2011) Understanding context-dependency in plant–microbe symbiosis: the influence of abiotic and biotic contexts on host fitness and the rate of symbiont transmission. Environ Exp Bot 71:137–145. doi: 10.1016/j.envexpbot.2010.11.004 CrossRefGoogle Scholar
  69. De Battista J (2005) Neotyphodium research and application in South America. In: Roberts CA, West CP, Spiers DE (eds) Neotyphodium in cool-season grasses. Blackwell Publishing Ltd, Ames, pp 65–71CrossRefGoogle Scholar
  70. De Battista J, Altier N, Galdames DR, Dall’Agnot M (1997) Significance of endophyte toxicosis and current practices in dealing with the problem in South America. In: Bacon CW, Hill NS (eds) Neotyphodium/grass interactions. Plenum Press, New York, pp 383–387CrossRefGoogle Scholar
  71. de Sassi C, Müller CB, Krauss J (2006) Fungal plant endosymbionts alter life history and reproductive success of aphid predators. Proc R Soc B 273:1301–1306. doi: 10.1098/rspb.2005.3442 PubMedCentralPubMedCrossRefGoogle Scholar
  72. Dennis SB, Allen VG, Saker KE, Fontenot JP, Ayad JY, Brown CP (1998) Influence of Neotyphodium coenophialum on copper concentration in tall fescue. J Anim Sci 76:2687–2693PubMedGoogle Scholar
  73. di Menna ME, Waller JE (1986) Visual assessment of seasonal changes in amount of mycelium of Acremonium loliae in leaf sheaths of perennial ryegrass. N Z J Agric Res 29:111–116. doi: 10.1080/00288233.1986.10417982 CrossRefGoogle Scholar
  74. di Menna ME, Mortimer PH, Prestidge RA, Hawkes AD, Sprosen JM (1992) Lolitrem B concentrations, counts of Acremonium lolii hyphae, and the incidence of ryegrass staggers in lambs on plots of A. lolii-infected perennial ryegrass. N Z J Agric Res 35:211–217. doi: 10.1080/00288233.1992.10417721 CrossRefGoogle Scholar
  75. di Menna ME, Finch SC, Popay AJ, Smith BL (2012) A review of the Neotyphodium lolii / Lolium perenne symbiosis and its associated effects on animal and plant health, with particular emphasis on ryegrass staggers. N Z Vet J 60:315–328. doi: 10.1080/00480169.2012.697429 PubMedCrossRefGoogle Scholar
  76. Dirihan S, Helander M, Saloniemi I, Gundel PE, Saikkonen K (2014) Effects of systemic fungal endophytes on the performance of meadow and tall fescues in mixture with red clover. Grass Forage Sci 70: 465–473. doi:  10.1111/gfs.12145
  77. Easton HS, Lee CK, Fitzgerald RD (1994) Tall fescue in Australia and New Zealand. N Z J Agric Res 37:405–417. doi: 10.1080/00288233.1994.9513078 CrossRefGoogle Scholar
  78. Eerens JPJ, Lucas RJ, Easton S, White JGH (1998) Influence of the endophyte (Neotyphodium lolii) on morphology, physiology, and alkaloid synthesis of perennial ryegrass during high temperature and water stress. N Z J Agric Res 41:219–226. doi: 10.1080/00288233.1998.9513305 CrossRefGoogle Scholar
  79. Ekanayake PN, Hand ML, Spangenberg GC, Forster JW, Guthridge KM (2012) Genetic diversity and host specificity of fungal endophyte taxa in fescue pasture grasses. Crop Sci 52:2243–2252. doi: 10.2135/cropsci2011.12.0664 CrossRefGoogle Scholar
  80. Emile JC, Bony S, Ghesquiere M (2000) Influence of consumption of endophyte-infested tall fescue hay on performance of heifers and lambs. J Anim Sci 78:358–364PubMedGoogle Scholar
  81. Faeth SH (2002) Are endophytic fungi defensive plant mutualists? Oikos 98:25–36. doi: 10.1034/j.1600-0706.2002.980103.x CrossRefGoogle Scholar
  82. Faeth SH, Helander ML, Saikkonen K (2004) Asexual Neotyphodium endophytes in a native grass reduce competitive abilities. Ecol Lett 7:304–313. doi: 10.1111/j.1461-0248.2004.00578.x CrossRefGoogle Scholar
  83. Faeth SH, Gardner DR, Hayes CJ, Jani A, Wittlinger SK, Jones TA (2006) Temporal and spatial variation in alkaloid levels in Achnatherum robustum, a native grass infected with the endophyte Neotyphodium. J Chem Ecol 32:307–324. doi: 10.1007/s10886-005-9003-x PubMedCrossRefGoogle Scholar
  84. Fink-Gremmels J (2005) Mycotoxins in forages. In: Diaz DE (ed) The mycotoxin blue book. Nottingham University Press, Nottingham, pp 249–268Google Scholar
  85. Fletcher LR (1999) “Non-toxic” endophytes in ryegrass and their effect on livestock health and production. In: Woodfield DR, Matthew C (eds) Ryegrass endophyte – an essential New Zealand symbiosis, vol 7, Grassland research and practice series. New Zealand Grassland Association, Palmerston North, pp 133–139Google Scholar
  86. Fletcher LR (2012) Novel endophytes in New Zealand grazing systems: the perfect solution or a compromise? In: Young CA, Aiken GE, McCulley RL, Strickland JR, Schardl CL (eds) Epichloae, endophytes of cool season grasses: implications, utilization and biology. The Samuel Roberts Noble Foundation, Ardmore, pp 5–13Google Scholar
  87. Fletcher LR, Harvey IC (1981) An association of a Lolium endophyte with ryegrass staggers. N Z Vet J 29:185–186. doi: 10.1080/00480169.1981.34839 PubMedCrossRefGoogle Scholar
  88. Fletcher LR, Sutherland BL (2009) Sheep responses to grazing ryegrass with AR37. Proc N Z Grassland Assoc 71:127–132Google Scholar
  89. Fletcher LR, Sutherland BL, Fletcher CG (1999) The impact of endophyte on the health and productivity of sheep grazing ryegrass based pastures. In: Woodfield DR, Matthew C (eds) Ryegrass endophyte – an essential New Zealand symbiosis, vol 7, Grassland research and practice series. New Zealand Grassland Association, Palmerston North, pp 11–17Google Scholar
  90. Fribourg HA, Chestnut AB, Thompson RW, McLaren JB, Carlisle RJ, Gwinn KD, Dixon MC, Smith MC (1991) Steer performance in fescue-clover pastures with different levels of endophyte infestation. Agron J 83:777–781. doi: 10.2134/agronj1991.00021962008300050001x CrossRefGoogle Scholar
  91. Fribourg HA, Hannaway DB, West CP (2009) Tall fescue for the twenty-first century, vol 53, Agron monograph. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, MadisonGoogle Scholar
  92. Galey FD, Barr B, Anderson M (1993) Grassland staggers of California. N Z Vet J 41:217Google Scholar
  93. Gallagher RT, White EP, Mortimer PH (1981) Ryegrass staggers: isolation of potent neurotoxins lolitrem A and lolitrem B from staggers-producing pastures. N Z Vet J 29:189–190. doi: 10.1080/00480169.1981.34843 PubMedCrossRefGoogle Scholar
  94. Garcia Parisi PA, Grimoldi AA, Omacini M (2014) Endophytic fungi of grasses protect other plants from aphid herbivory. Fungal Ecol 9:61–64CrossRefGoogle Scholar
  95. Gibbs Russell GE, Ellis RP (1982) The genus Melica L. (Poaceae) in southern Africa. Bothalia 14:37–44CrossRefGoogle Scholar
  96. Gibert A, Hazard L (2011) Endophyte infection of Festuca eskia enhances seedling survival to drought and cutting at the expense of clonal expansion. J Plant Ecol 4:201–208. doi: 10.1093/jpe/rtr009 CrossRefGoogle Scholar
  97. Gibert A, Volaire F, Barre P, Hazard L (2012) A fungal endophyte reinforces population adaptive differentiation in its host grass species. New Phytol 194:561–571. doi: 10.1111/j.1469-8137.2012.04073.x PubMedCrossRefGoogle Scholar
  98. Gonzalo-Turpin H, Barre P, Gibert A, Grisard A, West CP, Hazard L (2010) Co-occurring patterns of endophyte infection and genetic structure in the alpine grass, Festuca eskia: implications for seed sourcing in ecological restoration. Conserv Genet 11:877–887. doi: 10.1007/s10592-009-9927-8 CrossRefGoogle Scholar
  99. Groppe K, Steinger T, Sanders I, Schmid B, Wiemken A, Boller T (1999) Interaction between the endophytic fungus Epichloë bromicola and the grass Bromus erectus: effects of endophyte infection, fungal concentration and environment on grass growth and flowering. Mol Ecol 8:1827–1835. doi: 10.1046/j.1365-294x.1999.00772.x PubMedCrossRefGoogle Scholar
  100. Gundel PE, Pérez LI, Helander M, Saikkonen K (2013) Symbiotically modified organisms: nontoxic fungal endophytes in grasses. Trends Plant Sci 18:420–427. doi: 10.1016/j.tplants.2013.03.003 PubMedCrossRefGoogle Scholar
  101. Guy PL, Davis LT (2002) Variation in the incidence of barley yellow dwarf virus and in the ability of Neotyphodium endophytes to deter feeding by aphids (Rhopalosiphum padi) on Australasian tall fescue. Australas Plant Pathol 31:307–308. doi: 10.1071/AP02032 CrossRefGoogle Scholar
  102. Gwinn KD, Gavin AM (1992) Relationship between endophyte infestation level of tall fescue seed lots and Rhizoctonia zeae seedling disease. Plant Dis 76:911–914CrossRefGoogle Scholar
  103. Hamilton CE, Faeth SH, Dowling TE (2009) Distribution of hybrid fungal symbionts and environmental stress. Microb Ecol 58:408–413. doi: 10.1007/s00248-009-9504-1 PubMedCrossRefGoogle Scholar
  104. Hamilton CE, Dowling TE, Faeth SH (2010) Hybridization in endophyte symbionts alters host response to moisture and nutrient treatments. Microb Ecol 59:768–775. doi: 10.1007/s00248-009-9606-9 PubMedCrossRefGoogle Scholar
  105. Hance HF (1876) On a Mongolian grass producing intoxication in cattle. J Bot 14:210–212Google Scholar
  106. Hand ML, Cogan NOI, Stewart AV, Forster JW (2010) Evolutionary history of tall fescue morphotypes inferred from molecular phylogenetics of the Lolium-Festuca species complex. BMC Evol Biol 10:303. doi: 10.1186/1471-2148-10-303 PubMedCentralPubMedCrossRefGoogle Scholar
  107. Härri SA, Krauss J, Müller CB (2009) Extended larval development time for aphid parasitoids in the presence of plant endosymbionts. Ecol Entomol 34:20–25. doi: 10.1111/j.1365-2311.2008.01037.x CrossRefGoogle Scholar
  108. Hesse U, Latch GCM (1999) Influence of Neotyphodium lolii and barley yellow dwarf virus, individually and combined, on the growth of Lolium perenne. Australas Plant Pathol 28:240–247. doi: 10.1071/AP99039 CrossRefGoogle Scholar
  109. Hesse U, Schöberlein W, Wittenmayer L, Förster K, Warnstorff K, Diepenbrock W, Merbach W (2003) Effects of Neotyphodium endophytes on growth, reproduction and drought-stress tolerance of three Lolium perenne L. genotypes. Grass Forage Sci 58:407–415CrossRefGoogle Scholar
  110. Hoare DB (2014) Melica decumbens thunb. Available at http://www.fao.org/ag/agp/AGPC/doc/gbase/Safricadata/meldec.htm. Accessed 6 July 2014
  111. Hoveland CS (1993) Importance and economic significance of the Acremonium endophytes to performance of animals and grass plant. Agric Ecosyst Environ 44:3–12. doi: 10.1016/0167-8809(93)90036-o CrossRefGoogle Scholar
  112. Hoveland CS, Bouton JH, Durham RG (1999) Fungal endophyte effects on production of legumes in association with tall fescue. Agron J 91:897–902. doi: 10.2134/agronj1999.916897x CrossRefGoogle Scholar
  113. Hume DE, Barker DJ (2005) Growth and management of endophytic grasses in pastoral agriculture. In: Roberts C, West CP, Spiers D (eds) Neotyphodium in cool-season grasses. Blackwell Publishing, Ames, pp 201–226Google Scholar
  114. Hume DE, Sewell JC (2014) Agronomic advantages conferred by endophyte infection of perennial ryegrass (Lolium perenne L.) and tall fescue (Festuca arundinacea Schreb.) in Australia. Crop Pasture Sci. doi: 10.1071/CP13383 Google Scholar
  115. Hume DE, Cooper BM, Panckhurst KA (2009) The role of endophyte in determining the persistence and productivity of ryegrass, tall fescue and meadow fescue in Northland. Proc N Z Grassland Assoc 71:145–150Google Scholar
  116. Hunt MG, Rasmussen S, Newton PCD, Parsons AJ, Newman JA (2005) Near-term impacts of elevated CO2, nitrogen and fungal endophyte-infection on Lolium perenne L. growth, chemical composition and alkaloid production. Plant Cell Environ 28:1345–1354. doi: 10.1111/j.1365-3040.2005.01367.x CrossRefGoogle Scholar
  117. Iannone LJ, Cabral D, Schardl CL, Rossi MS (2009) Phylogenetic divergence, morphological and physiological differences distinguish a new Neotyphodium endophyte species in the grass Bromus auleticus from South America. Mycologia 101:340–351. doi: 10.3852/08-156 PubMedCrossRefGoogle Scholar
  118. Iannone LJ, Novas MV, Young CA, De Battista JP, Schardl CL (2012) Endophytes of native grasses from South America: biodiversity and ecology. Fungal Ecol 5:357–363. doi: 10.1016/j.funeco.2011.05.007 CrossRefGoogle Scholar
  119. IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis: contribution of working group I to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK/New YorkGoogle Scholar
  120. Iqbal J, Siegrist JA, Nelson JA, McCulley RL (2012) Fungal endophyte infection increases carbon sequestration potential of southeastern USA tall fescue stands. Soil Biol Biochem 44:81–92. doi: 10.1016/j.soilbio.2011.09.010 CrossRefGoogle Scholar
  121. Johnson MC, Dahlman DL, Siegel MR, Bush LP, Latch GC, Potter DA, Varney DR (1985) Insect feeding deterrents in endophyte-infected tall fescue. Appl Environ Microbiol 49:568–571PubMedCentralPubMedGoogle Scholar
  122. Johnson LJ, De Bonth ACM, Briggs LR, Caradus JR, Finch SC, Fleetwood DJ, Fletcher LR, Hume DE, Johnson RD, Popay AJ, Tapper BA, Simpson WR, Voisey CR, Card SD (2013) The exploitation of epichloae endophytes for agricultural benefit. Fungal Divers 60:171–188. doi: 10.1007/s13225-013-0239-4 CrossRefGoogle Scholar
  123. Jones TA, Ralphs MH, Gardner DR, Chatterton NJ (2000) Cattle prefer endophyte-free robust needlegrass. J Range Manage 53:427–431. doi: 10.2307/4003755 CrossRefGoogle Scholar
  124. Joost RE (1995) Acremonium in fescue and ryegrass: boon or bane? A review. J Anim Sci 73:881–888PubMedGoogle Scholar
  125. Ju NJ, Hill NS, Abbott T, Ingram KT (2006) Temperature influences on endophyte growth in tall fescue. Crop Sci 46:404–412. doi: 10.2135/cropsci2005.0282 CrossRefGoogle Scholar
  126. Jung GA, Van Wijk AJP, Hunt WF, Watson CE (1996) Ryegrasses. In: Moser LE, Buxton DR, Casler MD (eds) Cool-season forage grasses, vol 34, Agronomy monograph. ASA, CSSA and SSSA, Madison, pp 605–641Google Scholar
  127. Kane KH (2011) Effects of endophyte infection on drought stress tolerance of Lolium perenne accessions from the Mediterranean region. Environ Exp Bot 71:337–344. doi: 10.1016/j.envexpbot.2011.01.002 Google Scholar
  128. Kannadan S, Rudgers JA (2008) Endophyte symbiosis benefits a rare grass under low water availability. Funct Ecol 22:706–713. doi: 10.1111/j.1365-2435.2008.01395.x CrossRefGoogle Scholar
  129. Kellerman TS, Prozesky L, Schultz RA, Rabie CJ (1993) Neuromycotoxicoses of livestock on pastures in South Africa, with special reference to diploidosis. N Z Vet J 41:212–213Google Scholar
  130. Kennedy CW, Bush LP (1983) Effect of environmental and management factors on the accumulation of N-acetyl and N-formyl loline alkaloids in tall fescue. Crop Sci 23:547–552. doi: 10.2135/cropsci1983.0011183X002300030024x CrossRefGoogle Scholar
  131. Kimmons CA, Gwinn KD, Bernard EC (1990) Nematode reproduction on endophyte-infected and endophyte-free tall fescue. Plant Dis 74:757–761. doi: 10.1094/PD-74-0757 CrossRefGoogle Scholar
  132. Kivlin SN, Emery SM, Rudgers JA (2013) Fungal symbionts alter plant responses to global change. Am J Bot 100:1445–1457. doi: 10.3732/ajb.1200558 PubMedCrossRefGoogle Scholar
  133. Koh S, Hik DS (2007) Herbivory mediates grass-endophyte relationships. Ecology 88:2752–2757. doi: 10.1890/06-1958.1 PubMedCrossRefGoogle Scholar
  134. Krauss J, Härri SA, Bush L, Husi R, Bigler L, Power SA, Müller CB (2007) Effects of fertilizer, fungal endophytes and plant cultivar on the performance of insect herbivores and their natural enemies. Funct Ecol 21:107–116. doi: 10.1111/j.1365-2435.2006.01216.x CrossRefGoogle Scholar
  135. Lane GA, Christensen MJ, Miles CO (2000) Coevolution of fungal endophytes with grasses: the significance of secondary metabolites. In: Bacon CW, White JF Jr (eds) Microbial endophytes. Marcel Dekker, New York, pp 341–388Google Scholar
  136. Latch GCM (2009) Diseases and endophytes. In: Fribourg HA, Hannaway DB, West CP (eds) Tall fescue for the twenty-first century, vol 53, Agron monograph. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, pp 121–127Google Scholar
  137. Layton DL, Fletcher LR, Litherland AJ, Scannell MG, Sprosen J, Hoogendoorn CJ, Lambert MG (2004) Effect of ergot alkaloids on liveweight gain and urine lysergol level in ewe hoggets and heifers. Proc N Z Soc Anim Prod 64:192–196Google Scholar
  138. Lehtonen P, Helander M, Saikkonen K (2005a) Are endophyte-mediated effects on herbivores conditional on soil nutrients? Oecologia 142:38–45. doi: 10.1007/s00442-004-1701-5 PubMedCrossRefGoogle Scholar
  139. Lehtonen P, Helander M, Wink M, Sporer F, Saikkonen K (2005b) Transfer of endophyte-origin defensive alkaloids from a grass to a hemiparasitic plant. Ecol Lett 8:1256–1263. doi: 10.1111/j.1461-0248.2005.00834.x CrossRefGoogle Scholar
  140. Lehtonen PT, Helander M, Siddiqui SA, Lehto K, Saikkonen K (2006) Endophytic fungus decreases plant virus infections in meadow ryegrass (Lolium pratense). Biol Lett 2:620–623. doi: 10.1098/rsbl.2006.0499 PubMedCentralPubMedCrossRefGoogle Scholar
  141. Lemons A, Clay K, Rudgers JA (2005) Connecting plant-microbial interactions above and belowground: a fungal endophyte affects decomposition. Oecologia 145:595–604. doi: 10.1007/s00442-005-0163-8 PubMedCrossRefGoogle Scholar
  142. Leuchtmann A, Schmidt D, Bush LP (2000) Different levels of protective alkaloids in grasses with stroma-forming and seed-transmitted Epichloë/Neotyphodium endophytes. J Chem Ecol 26:1025–1036. doi: 10.1023/a:1005489032025 CrossRefGoogle Scholar
  143. Leuchtmann A, Bacon CW, Schardl CL, White JF Jr, Tadych M (2014) Nomenclatural realignment of Neotyphodium species with genus Epichloë. Mycologia 106:202–215. doi: 10.3852/106.2.202 PubMedCrossRefGoogle Scholar
  144. Leury B, Henry M, Kemp S, Webb-Ware J (2014) Developing increased understanding, awareness and potential mitigation strategies for perennial ryegrass toxicosis in sheep production systems. Project B.AHE.0039. Meat and Livestock Australia Limited, North SydneyGoogle Scholar
  145. Lewis GC (1997) Significance of endophyte toxicosis and current practices in dealing with the problem in Europe. In: Bacon CW, Hill NS (eds) Neotyphodium/grass interactions. Proceedings of the third international symposium on Neotyphodium/grass interactions, Athens. Plenum Press, New York, pp 377–382Google Scholar
  146. Lewis GC (2001) An overview of the symbiotic association between Neotyphodium/Epichloë fungal endophytes and forage grasses. Asp Appl Biol 63:203–212Google Scholar
  147. Lewis GC (2004) Effects of biotic and abiotic stress on the growth of three genotypes of Lolium perenne with and without infection by the fungal endophyte Neotyphodium lolii. Ann Appl Biol 144:53–63. doi: 10.1111/j.1744-7348.2004.tb00316.x CrossRefGoogle Scholar
  148. Lewis GC, Day RC (1993) Growth of a perennial ryegrass genotype with and without infection by ryegrass endophyte and virus diseases. Ann Appl Biol 122:144–145Google Scholar
  149. Lewis GC, Ravel C, Naffaa W, Astier C, Charmet G (1997) Occurrence of Acremonium endophytes in wild populations of Lolium spp. in European countries and a relationship between level of infection and climate in France. Ann Appl Biol 130:227–238. doi: 10.1111/j.1744-7348.1997.tb06828.x CrossRefGoogle Scholar
  150. Leyronas C, Raynal G (2001) Presence of Neotyphodium-like endophytes in European grasses. Ann Appl Biol 139:119–127. doi: 10.1111/j.1744-7348.2001.tb00136.x CrossRefGoogle Scholar
  151. Li B, Zheng X, Sun S (1997) A survey of endophytic fungi in some native forage grasses of northwestern China. In: Bacon CW, Hill NS (eds) Neotyphodium/grass interactions. Proceedings of the third international symposium on Neotyphodium/grass interactions, Athens. Plenum Press, New York, pp 9–71Google Scholar
  152. Li CJ, Nan ZB, Paul VH, Dapprich PD, Liu Y (2004) A new Neotyphodium species symbiotic with drunken horse grass (Achnatherum inebrians) in China. Mycotaxon 90:141–147Google Scholar
  153. Li CJ, Gao JH, Nan ZB (2007) Interactions of Neotyphodium gansuense, Achnatherum inebrians, and plant-pathogenic fungi. Mycol Res 111:1220–1227. doi: 10.1016/j.mycres.2007.08.012 PubMedCrossRefGoogle Scholar
  154. Liu J, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J 50:529–544. doi: 10.1111/j.1365-313X.2007.03069.x PubMedCrossRefGoogle Scholar
  155. Liu Q, Parsons AJ, Xue H, Fraser K, Ryan GD, Newman JA, Rasmussen S (2011) Competition between foliar Neotyphodium lolii endophytes and mycorrhizal Glomus spp. fungi in Lolium perenne depends on resource supply and host carbohydrate content. Funct Ecol 25:910–920. doi: 10.1111/j.1365-2435.2011.01853.x CrossRefGoogle Scholar
  156. Lowe KF, Bowdler TM, Hume DE, Casey ND, Tapper BA (2008) The effect of endophyte on the performance of irrigated perennial ryegrasses in subtropical Australia. Aust J Agric Res 59:567–577. doi: 10.1071/AR08019 CrossRefGoogle Scholar
  157. Mack KM, Rudgers JA (2008) Balancing multiple mutualists: asymmetric interactions among plants, arbuscular mycorrhizal fungi, and fungal endophytes. Oikos 117:310–320. doi: 10.1111/j.2007.0030-1299.15973.x CrossRefGoogle Scholar
  158. Mahmood T, Gergerich RC, Milus EA, West CP, Darcy CJ (1993) Barley yellow dwarf viruses in wheat, endophyte-infected and endophyte-free tall fescue, and other hosts in Arkansas. Plant Dis 77:225–228CrossRefGoogle Scholar
  159. Malinowski DP, Belesky DP (1999) Tall fescue aluminum tolerance is affected by Neotyphodium coenophialum endophyte. J Plant Nutr 22:1335–1349. doi: 10.1080/01904169909365716 CrossRefGoogle Scholar
  160. Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40:923–940. doi: 10.2135/cropsci2000.404923x CrossRefGoogle Scholar
  161. Malinowski DP, Belesky DP, Fedders JM (1999) Endophyte infection may affect the competitive ability of tall fescue grown with red clover. J Agron Crop Sci 183:91–101. doi: 10.1046/j.1439-037x.1999.00322.x CrossRefGoogle Scholar
  162. Malinowski DP, Belesky DP, Lewis GC (2005a) Abiotic stresses in endophytic grasses. In: Roberts C, West CP, Spiers D (eds) Neotyphodium in cool-season grasses. Blackwell Publishing Ltd, Oxford, pp 187–199CrossRefGoogle Scholar
  163. Malinowski DP, Zuo H, Kramp BA, Muir JP, Pinchak WE (2005b) Obligatory summer-dormant cool-season perennial grasses for semiarid environments of the southern Great Plains. Agron J 97:147–154. doi: 10.2134/agronj2005.0147 CrossRefGoogle Scholar
  164. Malinowski DP, West CP, Belesky DP (2012) The role of endophytes in summer-dormant tall fescue. In: Young CA, Aiken GE, McCulley RL, Strickland JR, Schardl CL (eds) Epichloae, endophytes of cool season grasses: implications, utilization and biology. The Samuel Roberts Noble Foundation, Ardmore, pp 104–106Google Scholar
  165. Marks S, Clay K (1990) Effects of CO2 enrichment, nutrient addition, and fungal endophyte-infection on the growth of two grasses. Oecologia 84:207–214. doi: 10.1007/BF00318273 CrossRefGoogle Scholar
  166. Marks S, Lincoln DE (1996) Antiherbivore defense mutualism under elevated carbon dioxide levels: a fungal endophyte and grass. Environ Entomol 25:618–623CrossRefGoogle Scholar
  167. McCulley RL, Bush LP, Carlisle AE, Ji H, Nelson JA (2014) Warming reduces tall fescue abundance but stimulates toxic alkaloid concentrations in transition zone pastures of the US. Front Chem. doi: 10.3389/fchem.2014.00088 PubMedCentralPubMedGoogle Scholar
  168. McNear DH Jr, McCulley RL (2012) Influence of the Neotyphodium – tall fescue symbiosis on below ground processes. In: Young CA, Aiken GE, McCulley RL, Strickland JR, Schardl CL (eds) Epichloae, endophytes of cool season grasses: implications, utilization and biology. The Samuel Roberts Noble Foundation, Ardmore, pp 94–99Google Scholar
  169. Meijer G, Leuchtmann A (2000) The effects of genetic and environmental factors on disease expression (stroma formation) and plant growth in Brachypodium sylvaticum infected by Epichloë sylvatica. Oikos 91:446–458. doi: 10.1034/j.1600-0706.2000.910305.x CrossRefGoogle Scholar
  170. Milbau A, Scheerlinck L, Reheul D, Cauwer BD, Nijs I (2005) Ecophysiological and morphological parameters related to survival in grass species exposed to an extreme climatic event. Physiol Plant 125:500–512. doi: 10.1111/j.1399-3054.2005.00586.x CrossRefGoogle Scholar
  171. Miles CO, di Menna ME, Kellerman TS, Garthwaite I, Ball OJ-P (1995a) Melica decumbens. In: Garthwaite L (ed) Toxinology and food safety research report 1992–1995. AgResearch, Hamilton, p 20Google Scholar
  172. Miles CO, Uzal F, Garthwaite I, Munday-Finch SC, di Menna ME (1995b) Poa huecu and Festuca argentina. In: Garthwaite L (ed) Toxinology and food safety research report 1992–1995. AgResearch, Hamilton, p 20Google Scholar
  173. Miles CO, Lane GA, di Menna ME, Garthwaite I, Piper EL, Ball OJ-P, Latch GCM, Allen JM, Hunt MB, Bush LP, Min F, Fletcher I, Harris PS (1996) High levels of ergonovine and lysergic acid amide in toxic Achnatherum inebrians accompany infection by an Acremonium-like endophytic fungus. J Agric Food Chem 44:1285–1290. doi: 10.1021/jf950410k CrossRefGoogle Scholar
  174. Miles CO, di Menna ME, Jacobs SWL, Garthwaite I, Lane GA, Prestidge RA, Marshall SL, Wilkinson HH, Schardl CL, Ball OJ-P, Latch GCM (1998) Endophytic fungi in indigenous Australasian grasses associated with toxicity to livestock. Appl Environ Microbiol 64:601–606PubMedCentralPubMedGoogle Scholar
  175. Mirzahosseini Z, Shabani L, Sabzalian MR, Sharifi-Tehrani M (2014) Neotyphodium endophytes may increase tolerance to Ni in tall fescue. Eur Soil Biol 63:33–40. doi: 10.1016/j.ejsobi.2014.05.004 CrossRefGoogle Scholar
  176. Moate PJ, Williams SRO, Grainger C, Hannah MC, Mapleson D, Auldist MJ, Greenwood JS, Popay AJ, Hume DE, Mace WJ, Wales WJ (2012) Effects of wild-type, AR1 and AR37 endophyte-infected perennial ryegrass on dairy production in Victoria, Australia. Anim Prod Sci 52:1117–1130. doi: 10.1071/AN12126 CrossRefGoogle Scholar
  177. Monnet F, Vaillant N, Vernay P, Coudret A, Sallanon H, Hitmi A (2001) Relationship between PSII activity, CO2 fixation, and Zn, Mn and Mg contents of Lolium perenne under zinc stress. J Plant Physiol 158:1137–1144. doi: 10.1078/S0176-1617(04)70140-6 CrossRefGoogle Scholar
  178. Moon CD, Miles CO, Järlfors U, Schardl CL (2002) The evolutionary origins of three new Neotyphodium endophyte species from grasses indigenous to the Southern Hemisphere. Mycologia 94:694–711PubMedCrossRefGoogle Scholar
  179. Moon CD, Guillaumin JJ, Ravel C, Li C, Craven KD, Schardl CL (2007) New Neotyphodium endophyte species from the grass tribes Stipeae and Meliceae. Mycologia 99:895–905. doi: 10.3852/mycologia.99.6.895 PubMedCrossRefGoogle Scholar
  180. Morse LJ, Day TA, Faeth SH (2002) Effect of Neotyphodium endophyte infection on growth and leaf gas exchange of Arizona fescue under contrasting water availability regimes. Environ Exp Bot 48:257–268. doi: 10.1016/S0098-8472(02)00042-4 CrossRefGoogle Scholar
  181. Mortimer PH, Fletcher LR, Di Menna ME, Harvey IC, Smith GS, Barker GM, Gallagher RT, White EP (1982) Recent advances in ryegrass staggers. Proc Ruakura Farmers Conf 34:71–74Google Scholar
  182. Müller J (2003) Artificial infection by endophytes affects growth and mycorrhizal colonisationof Lolium perenne. Funct Plant Biol 30:419–424. doi: 10.1071/FP02189 CrossRefGoogle Scholar
  183. Müller CB, Krauss J (2005) Symbiosis between grasses and asexual fungal endophytes. Curr Opin Plant Biol 8:450–456. doi: 10.1016/j.pbi.2005.05.007 PubMedCrossRefGoogle Scholar
  184. Newsham KK, Lewis GC, Greenslade PD, McLeod AR (1998) Neotyphodium lolii, a fungal leaf endophyte, reduces fertility of Lolium perenne exposed to elevated UV-B radiation. Ann Bot 81:397–403. doi: 10.1006/anbo.1997.0572 CrossRefGoogle Scholar
  185. Nihsen ME, Piper EL, West CP, Crawford RJ, Denard TM, Johnson ZB, Roberts CA, Spiers DA, Rosenkrans CF (2004) Growth rate and physiology of steers grazing tall fescue inoculated with novel endophytes. J Anim Sci 82:878–883PubMedGoogle Scholar
  186. Novas VM, Collantes M, Cabral D (2007) Environmental effects on grass-endophyte associations in the harsh conditions of south Patagonia. FEMS Microbiol Ecol 61:164–173. doi: 10.1111/j.1574-6941.2007.00319.x PubMedCrossRefGoogle Scholar
  187. Oberhofer M, Leuchtmann A (2012) Genetic diversity in epichloid endophytes of Hordelymus europaeus suggests repeated host jumps and interspecific hybridizations. Mol Ecol 21:2713–2726. doi: 10.1111/j.1365-294X.2012.05459.x PubMedCrossRefGoogle Scholar
  188. Oberhofer M, Güsewell S, Leuchtmann A (2014) Effects of natural hybrid and non-hybrid Epichloë endophytes on the response of Hordelymus europaeus to drought stress. New Phytol 201:242–253. doi: 10.1111/nph.12496 PubMedCrossRefGoogle Scholar
  189. Odriozola E, Lopez T, Campero C, Giminez Placeres C (1993) Ryegrass staggers in heifers: a new mycotoxicosis in Argentina. Vet Hum Toxicol 35:144–146PubMedGoogle Scholar
  190. Oldenburg E (1998) Effects of endophyte-infected perennial ryegrass on the performance of sheep. Rev Med Vet 149:638Google Scholar
  191. Omacini M, Chaneton EJ, Ghersa CM, Müller CB (2001) Symbiotic fungal endophytes control insect host-parasite interaction webs. Nature 409:78–81. doi: 10.1038/35051070 PubMedCrossRefGoogle Scholar
  192. Omacini M, Eggers T, Bonkowski M, Gange AC, Jones TH (2006) Leaf endophytes affect mycorrhizal status and growth of co-infected and neighbouring plants. Funct Ecol 20:226–232. doi: 10.1111/j.1365-2435.2006.01099.x CrossRefGoogle Scholar
  193. Omacini M, Semmartin M, Perez LI, Gundel PE (2012) Grass–endophyte symbiosis: a neglected aboveground interaction with multiple belowground consequences. Appl Soil Ecol 61:273–279. doi: 10.1016/j.apsoil.2011.10.012 CrossRefGoogle Scholar
  194. Panaccione DG, Beaulieu WT, Cook D (2014) Bioactive alkaloids in vertically transmitted fungal endophytes. Funct Ecol 28:299–314. doi: 10.1111/1365-2435.12076 CrossRefGoogle Scholar
  195. Parish JA, McCann MA, Watson RH, Hoveland CS, Hawkins LL, Hill NS, Bouton JH (2003a) Use of nonergot alkaloid-producing endophytes for alleviating tall fescue toxicosis in sheep. J Anim Sci 81:1316–1322PubMedGoogle Scholar
  196. Parish JA, McCann MA, Watson RH, Paiva NN, Hoveland CS, Parks AH, Upchurch BL, Hill NS, Bouton JH (2003b) Use of nonergot alkaloid-producing endophytes for alleviating tall fescue toxicosis in stocker cattle. J Anim Sci 81:2856–2868PubMedGoogle Scholar
  197. Pecetti L, Annicchiarico P, Abdelguerfi A, Kallida R, Mefti M, Porqueddu C, Simões NM, Volaire F, Lelièvre F (2011) Response of Mediterranean tall fescue cultivars to contrasting agricultural environments and implications for selection. J Agron Crop Sci 197:12–20. doi: 10.1111/j.1439-037X.2010.00443.x CrossRefGoogle Scholar
  198. Pennell CG, Ball OJ-P (1999) The effects of Neotyphodium endophytes in tall fescue on pasture mealy bug (Balanococcus poae). In: Proceedings of the 52nd New Zealand plant protection conference, pp 259–263Google Scholar
  199. Pennell CGL, Rolston MP (2013) Avanex™ unique endophyte technology – bird deterrent endophytic grass for amenity turf and airports. In: Michalk DL, Millar GD, Badgery WB, Broadfoot KM (eds) Proceedings of the 22nd International Grassland Congress. New South Wales, Department of Primary Industry, Sydney/Orange, pp 453–455Google Scholar
  200. Pennell C, Popay AJ, Ball OJ-P, Hume DE, Baird DB (2005) Occurrence and impact of pasture mealybug (Balanococcus poae) and root aphid (Aploneura lentisci) on ryegrass (Lolium spp.) with and without infection by Neotyphodium fungal endophytes. N Z J Agric Res 48:329–337. doi: 10.1080/00288233.2005.9513663 CrossRefGoogle Scholar
  201. Petigrosso LR, Colabelli MN, Fernandez ON, Ispizua V, Cendoya MG (2013) Incidence of the endophyte fungus Neotyphodium coenophialum in pastures of tall fescue differing in age and soil characteristics. Afr J Agric Res 8:2655–2662. doi: 10.5897/AJAR12.2106 Google Scholar
  202. Petroski RJ, Powell RG, Clay K (1992) Alkaloids of Stipa robusta (sleepygrass) infected with an Acremonium endophyte. Nat Toxins 1:84–88. doi: 10.1002/nt.2620010205 PubMedCrossRefGoogle Scholar
  203. Piano E, Bertoli FB, Romani M, Tava A, Riccioni L, Valvassori M, Carroni AM, Pecetti L (2005) Specificity of host-endophyte association in tall fescue populations from Sardinia, Italy. Crop Sci 45:1456–1463. doi: 10.2135/cropsci2004.0287 CrossRefGoogle Scholar
  204. Pomilio AB, Rofi RD, Gambino MP, Mazzini CA, Debenedetti de Langenheim RT (1989) The lethal principle of Poa huecu (coiron blanco): a plant indigenous to Argentina. Toxicon 27:1251–1262. doi: 10.1016/0041-0101(89)90056-1 PubMedCrossRefGoogle Scholar
  205. Popay AJ (2009a) Insect herbivory and defensive mutualisms between plants and fungi. In: Torres M, White JF Jr (eds) Defensive mutualism in symbiotic association. Taylor and Francis Publications, Boca Raton, pp 347–367Google Scholar
  206. Popay AJ (2009b) Insect pests. In: Fribourg HA, Hannaway DB, West CP (eds) Tall fescue for the twenty-first century, vol 53, Agron monograph. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, pp 129–149Google Scholar
  207. Popay AJ, Hume DE (2011) Endophytes improve ryegrass persistence by controlling insects. In: Mercer CF (ed) Pasture persistence symposium, vol 15, Grassland research and practice series. New Zealand Grassland Association, Dunedin, pp 149–156Google Scholar
  208. Popay AJ, Thom ER (2009) Endophyte effects on major insect pests in a Waikato dairy pasture. Proc N Z Grassland Assoc 71:121–126Google Scholar
  209. Popay AJ, Hume DE, Baltus JG, Latch GCM, Tapper BA, Lyons TB, Cooper BM, Pennell CG, Eerens JPJ, Marshall SL (1999) Field performance of perennial ryegrass (Lolium perenne) infected with toxin-free fungal endophytes (Neotyphodium spp.). In: Woodfield DR, Matthew C (eds) Ryegrass endophyte – an essential New Zealand symbiosis, vol 7, Grassland research and practice series. New Zealand Grassland Association, Palmerston North, pp 113–122Google Scholar
  210. Popay AJ, Jensen JG, Cooper BM (2005) The effect of non-toxic endophytes in tall fescue on two major insect pests. Proc N Z Grassland Assoc 67:169–173Google Scholar
  211. Porter JK, Thompson FN Jr (1992) Effects of fescue toxicosis on reproduction in livestock. J Anim Sci 70:1594–1603PubMedGoogle Scholar
  212. Potter DA, Stokes JT, Redmond CT, Schardl CL, Panaccione DG (2008) Contribution of ergot alkaloids to suppression of a grass-feeding caterpillar assessed with gene knockout endophytes in perennial ryegrass. Entomol Exp Appl 126:138–147. doi: 10.1111/j.1570-7458.2007.00650.x CrossRefGoogle Scholar
  213. Prestidge RA (1993) Causes and control of perennial ryegrass staggers in New Zealand. Agric Ecosyst Environ 44:283–300. doi: 10.1016/0167-8809(93)90051-p CrossRefGoogle Scholar
  214. Prestidge RA, Gallagher RT (1985) Lolitrem B – a stem weevil toxin isolated from Acremonium-infected ryegrass. In: Proceedings 38th NZ weed and pest control conference, Palmerston North, pp 38–40Google Scholar
  215. Quigley PE (2000) Effects of Neotyphodium lolii infection and sowing rate of perennial ryegrass (Lolium perenne) on the dynamics of ryegrass/subterranean clover (Trifolium subterraneum) swards. Aust J Agric Res 51:47–56. doi: 10.1071/AR98136 CrossRefGoogle Scholar
  216. Rasmussen S, Parsons AJ, Bassett S, Christensen MJ, Hume DE, Johnson LJ, Johnson RD, Simpson WR, Stacke C, Voisey CR, Xue H, Newman JA (2007) High nitrogen supply and carbohydrate content reduce fungal endophyte and alkaloid concentration in Lolium perenne. New Phytol 173:787–797. doi: 10.1111/j.1469-8137.2006.01960.x PubMedCrossRefGoogle Scholar
  217. Rasmussen S, Parsons AJ, Newman JA (2009) Metabolomics analysis of the Lolium perenneNeotyphodium lolii symbiosis: more than just alkaloids? Phytochem Rev 8:535–550. doi: 10.1007/s11101-009-9136-6 CrossRefGoogle Scholar
  218. Ravel C, Courty C, Coudret A, Charmet G (1997) Beneficial effects of Neotyphodium lolii on the growth and the water status in perennial ryegrass cultivated under nitrogen deficiency or drought stress. Agronomie 17:173–181. doi: 10.1051/agro:19970304 CrossRefGoogle Scholar
  219. Read JC, Camp BJ (1986) The effect of the fungal endophyte Acremonium coenophialum in tall fescue on animal performance, toxicity, and stand maintenance. Agron J 78:848–850. doi: 10.2134/agronj1986.00021962007800050021x CrossRefGoogle Scholar
  220. Reed KFM, Scrivener CJ, Rainsford KA, Walker LV (2005) Neotyphodium research and application in Australia. In: Roberts C, West CP, Spiers D (eds) Neotyphodium in cool-season grasses. Blackwell Publishing, Ames, pp 43–54CrossRefGoogle Scholar
  221. Reed KFM, Nie ZN, Walker LV, Mace WJ, Clark SG (2011) Weather and pasture characteristics associated with outbreaks of perennial ryegrass toxicosis in southern Australia. Anim Prod Sci 51:738–752. doi: 10.1071/AN11016 CrossRefGoogle Scholar
  222. Ren A, Zhang L, Gao Y, Xie F (2006) Effects of cadmium on growth parameters of endophyte-infected endophyte-free ryegrass. J Plant Nutr Soil Sci 169:857–860. doi: 10.1002/jpln.200520543 CrossRefGoogle Scholar
  223. Ren A, Wei M, Yin L, Wu L, Zhou Y, Li X, Gao Y (2013) Benefits of a fungal endophyte in Leymus chinensis depend more on water than on nutrient availability. Environ Exp Bot. doi: 10.1016/j.envexpbot.2013.11.019 Google Scholar
  224. Roberts C, Andrae J (2005) Public education in tall fescue toxicosis. In: Roberts C, West CP, Spiers D (eds) Neotyphodium in cool-season grasses. Blackwell Publishing, Ames, pp 361–379CrossRefGoogle Scholar
  225. Roberts E, Lindow S (2014) Loline alkaloid production by fungal endophytes of Fescue species select for particular epiphytic bacterial microflora. ISME J 8:359–368. doi: 10.1038/ismej.2013.170 PubMedCentralPubMedCrossRefGoogle Scholar
  226. Robinson EA, Ryan GD, Newman JA (2012) A meta-analytical review of the effects of elevated CO2 on plant-arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytol 194:321–336. doi: 10.1111/j.1469-8137.2012.04074.x PubMedCrossRefGoogle Scholar
  227. Rúa MA, McCulley RL, Mitchell CE (2013) Fungal endophyte infection and host genetic background jointly modulate host response to an aphid-transmitted viral pathogen. J Ecol 101:1007–1018. doi: 10.1111/1365-2745.12106 CrossRefGoogle Scholar
  228. Rudgers JA, Swafford AL (2009) Benefits of a fungal endophyte in Elymus virginicus decline under drought stress. Basic Appl Ecol 10:43–51. doi: 10.1016/j.baae.2007.12.004 CrossRefGoogle Scholar
  229. Rudgers JA, Mattingly WB, Koslow JM (2005) Mutualistic fungus promotes plant invasion into diverse communities. Oecologia 144:463–471. doi: 10.1007/s00442-005-0039-y PubMedCrossRefGoogle Scholar
  230. Rudgers JA, Fischer S, Clay K (2010) Managing plant symbiosis: fungal endophyte genotype alters plant community composition. J Appl Ecol 47:468–477. doi: 10.1111/j.1365-2664.2010.01788.x CrossRefGoogle Scholar
  231. Ryan GD, Rasmussen S, Xue H, Parsons AJ, Newman JA (2014a) Metabolite analysis of the effects of elevated CO2 and nitrogen fertilization on the association between tall fescue (Schedonorus arundinaceus) and its fungal symbiont Neotyphodium coenophialum. Plant Cell Environ 37:204–212. doi: 10.1111/pce.12146 PubMedCrossRefGoogle Scholar
  232. Ryan GD, Shukla K, Rasmussen S, Shelp BJ, Newman JA (2014b) Phloem phytochemistry and aphid responses to elevated CO2, nitrogen fertilization and endophyte infection. Agric For Entomol. doi: 10.1111/afe.12055 Google Scholar
  233. Ryan GD, Rasmussen S, Parsons AJ, Newman JA (2015) The effects of carbohydrate supply and host genetic background on Epichloë endophyte and alkaloid concentrations in perennial ryegrass. Fungal Ecol 18:115–125Google Scholar
  234. Saari S, Faeth SH (2012) Hybridization of Neotyphodium endophytes enhances competitive ability of the host grass. New Phytol 195:231–236. doi: 10.1111/j.1469-8137.2012.04140.x PubMedCrossRefGoogle Scholar
  235. Saari S, Helander M, Faeth SH, Saikkonen K (2010) The effects of endophytes on seed production and seed predation of tall fescue and meadow fescue. Microb Ecol 60:928–934. doi: 10.1007/s00248-010-9749-8 PubMedCrossRefGoogle Scholar
  236. Sabzalian MR, Mirlohi A (2010) Neotyphodium endophytes trigger salt resistance in tall and meadow fescues. J Plant Nutr Soil Sci 173:952–957. doi: 10.1002/jpln.200900345 CrossRefGoogle Scholar
  237. Sabzalian MR, Mirlohi A, Sharifnabi B (2012) Reaction to powdery mildew fungus, Blumeria graminis in endophyte-infected and endophyte-free tall and meadow fescues. Australas Plant Pathol 41:565–572. doi: 10.1007/s13313-012-0147-1 CrossRefGoogle Scholar
  238. Sackett D, Francis J (2006) Economic assessment of the impact of wild endophyte-infected perennial ryegrass (Lolium perenne) on the productivity of sheep and cattle and the profitability of Australian livestock enterprises. Project AHW.089/B.AHW.0089. Meat and Livestock Australia Limited, North SydneyGoogle Scholar
  239. Saikkonen K (2000) Kentucky 31, far from home. Science 287:1887a. doi: 10.1126/science.287.5460.1887a CrossRefGoogle Scholar
  240. Saikkonen K, Wäli PR, Helander M, Faeth SH (2004) Evolution of endophyte-plant symbioses. Trends Plant Sci 9:275–280. doi: 10.1016/j.tplants.2004.04.005 PubMedCrossRefGoogle Scholar
  241. Saikkonen K, Lehtonen P, Helander M, Koricheva J, Faeth SH (2006) Model systems in ecology: dissecting the grass-endophyte literature. Trends Plant Sci 11:428–433. doi: 10.1016/j.tplants.2006.07.001 PubMedCrossRefGoogle Scholar
  242. Saikkonen K, Saari S, Helander M (2010a) Defensive mutualism between plants and endophytic fungi? Fungal Divers 41:101–113. doi: 10.1007/s13225-010-0023-7 CrossRefGoogle Scholar
  243. Saikkonen K, Wäli P, Helander M (2010b) Genetic compatibility determines endophyte-grass combinations. PLoS One 5, e11395. doi: 10.1371/journal.pone.0011395 PubMedCentralPubMedCrossRefGoogle Scholar
  244. Saikkonen K, Gundel P, Helander M (2013a) Chemical ecology mediated by fungal endophytes in grasses. J Chem Ecol 39:962–968. doi: 10.1007/s10886-013-0310-3 PubMedCrossRefGoogle Scholar
  245. Saikkonen K, Ruokolainen K, Huitu O, Gundel PE, Piltti T, Hamilton CE (2013b) Fungal endophytes help prevent weed invasions. Agric Ecosyst Environ 165:1–5. doi: 10.1016/j.agee.2012.12.002 CrossRefGoogle Scholar
  246. Salminen SO, Richmond DS, Grewal SK, Grewal PS (2005) Influence of temperature on alkaloid levels and fall armyworm performance in endophytic tall fescue and perennial ryegrass. Entomol Exp Appl 115:417–426. doi: 10.1111/j.1570-7458.2005.00303.x CrossRefGoogle Scholar
  247. Saona NM, Albrectsen BR, Ericson L, Bazely DR (2010) Environmental stresses mediate endophyte-grass interactions in a boreal archipelago. J Ecol 98:470–479. doi: 10.1111/j.1365-2745.2009.01613.x CrossRefGoogle Scholar
  248. Schardl CL (1996) EPICHLOË SPECIES: fungal symbionts of grasses. Annu Rev Phytopathol 34:109–130. doi: 10.1146/annurev.phyto.34.1.109 PubMedCrossRefGoogle Scholar
  249. Schardl CL, Craven KD (2003) Interspecific hybridization in plant-associated fungi and oomycetes: a review. Mol Ecol 12:2861–2873. doi: 10.1046/j.1365-294X.2003.01965.x PubMedCrossRefGoogle Scholar
  250. Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340. doi: 10.1146/annurev.arplant.55.031903.141735 PubMedCrossRefGoogle Scholar
  251. Schardl CL, Young CA, Hesse U, Amyotte SG, Andreeva K, Calie PJ, Fleetwood DJ, Haws DC, Moore N, Oeser B, Panaccione DG, Schweri KK, Voisey CR, Farman ML, Jaromczyk JW, Roe BA, O’Sullivan DM, Scott B, Tudzynski P, An Z, Arnaoudova EG, Bullock CT, Charlton ND, Chen L, Cox M, Dinkins RD, Florea S, Glenn AE, Gordon A, Güldener U, Harris DR, Hollin W, Jaromczyk J, Johnson RD, Khan AK, Leistner E, Leuchtmann A, Li C, Liu JG, Liu J, Liu M, Mace W, Machado C, Nagabhyru P, Pan J, Schmid J, Sugawara K, Steiner U, Takach JE, Tanaka E, Webb JS, Wilson EV, Wiseman JL, Yoshida R, Zeng Z (2013a) Plant-symbiotic fungi as chemical engineers: multi-genome analysis of the Clavicipitaceae reveals dynamics of alkaloid loci. PLoS Genet 9(2):e1003323. doi: 10.1371/journal.pgen.1003323 PubMedCentralPubMedCrossRefGoogle Scholar
  252. Schardl CL, Young CA, Pan J, Florea S, Takach JE, Panaccione DG, Farman ML, Webb JS, Jaromczyk J, Charlton ND, Nagabhyru P, Chen L, Shi C, Leuchtmann A (2013b) Currencies of mutualisms: sources of alkaloid genes in vertically transmitted epichloae. Toxins 5:1064–1088. doi: 10.3390/toxins5061064 PubMedCentralPubMedCrossRefGoogle Scholar
  253. Schmidt D (1990) Antagonistic effect of Acremonium spp. against potential pathogens. In: Quisenberry SS, Joost RE (eds) Proceedings of the international symposium on Acremonium/grass interactions. Louisiana Agricultural Experiment Station, Baton Rouge, pp 52–57Google Scholar
  254. Schmidt SP, Osborn TG (1993) Effects of endophyte-infected tall fescue on animal performance. Agric Ecosyst Environ 44:233–262. doi: 10.1016/0167-8809(93)90049-u CrossRefGoogle Scholar
  255. Seddon HR, Carne HR (1926) Staggers in stock due to rough-bearded grass (Echinopogon ovatus). Agric Gaz N S W 37:684–690Google Scholar
  256. Sepulveda N, Rodriguez F, Jara R (1996) Poisoning in cattle from consumption of tall fescue (Festuca arundinacea) with the fungal endophyte (Acremonium coenophialum). Arch Med Vet 28:113–116Google Scholar
  257. Shimanuki T, Sato T (1983) Occurrence of the choke disease on timothy caused by Epichloë typhina (Pers.ex Fr.) Tul. in Hokkaido and location of the endophytic mycelia with plant tissue (JE). Res Bull Hokkaido Natl Agric Exp Stn 138: 87–97.Google Scholar
  258. Shymanovich T, Saari S, Lovin ME, Jarmusch AK, Jarmusch SA, Musso AM, Charlton ND, Young CA, Cech NB, Faeth SH (2015) Alkaloid variation among epichloid endophytes of sleepygrass (Achnatherum robustum) and consequences for resistance to insect herbivores. J Chem Ecol 41:93–104. doi: 10.1007/s10886-014-0534-x PubMedCrossRefGoogle Scholar
  259. Siegel MR, Latch GCM (1991) Expression of antifungal activity in agar culture by isolates of grass endophytes. Mycologia 83:529–537CrossRefGoogle Scholar
  260. Siegel MR, Latch GCM, Bush LP, Fannin FF, Rowan DD, Tapper BA, Bacon CW, Johnson MC (1990) Fungal endophyte-infected grasses: alkaloid accumulation and aphid response. J Chem Ecol 16:3301–3315. doi: 10.1007/bf00982100 PubMedCrossRefGoogle Scholar
  261. Siegrist JA, McCulley RL, Bush LP, Phillips TD (2010) Alkaloids may not be responsible for endophyte-associated reductions in tall fescue decomposition rates. Funct Ecol 24:460–468. doi: 10.1111/j.1365-2435.2009.01649.x CrossRefGoogle Scholar
  262. Simpson WR, Faville MJ, Moraga RA, Williams WM, McManus MT, Johnson WR (2014) Epichloë fungal endophytes and the formation of synthetic symbioses in Hordeeae (=Triticeae) grasses. J Syst Evol. doi: 10.1111/jse.12107 Google Scholar
  263. Soleimani M, Hajabbasi MA, Afyuni M, Mirlohi A, Borggaard OK, Holm PE (2010) Effect of endophytic fungi on cadmium tolerance and bioaccumulation by Festuca arundinacea and Festuca pratensis. Int J Phytoremediation 12:535–549. doi: 10.1080/15226510903353187 PubMedCrossRefGoogle Scholar
  264. Spatafora JW, Sung GH, Sung JM, Hywel-Jones NL, White JF Jr (2007) Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes. Mol Ecol 16:1701–1711. doi: 10.1111/j.1365-294X.2007.03225.x PubMedCrossRefGoogle Scholar
  265. Stewart A, Hume D, Latch G, Tapper B, Simpson W (2004) Poa matthewsii, a New Zealand grass endemic with an endophyte. In: Kallenback R, Rosenkrans C Jr, Lock TR (eds) 5th international symposium on Neotyphodium/grass interactions. University of Arkansas, Fayetteville, p 217Google Scholar
  266. Strahan SR, Hemken RW, Jackson JA Jr, Buckner RC, Bush LP, Siegel MR (1987) Performance of lactating dairy cows fed tall fescue forage. J Dairy Sci 70:1228–1234PubMedCrossRefGoogle Scholar
  267. Strickland JR, Spiers DE, Oliver JW, Aiken GE (2009) Physiological basis for fescue toxicosis. In: Fribourg HA, Hannaway DB, West CP (eds) Tall fescue for the twenty-first century, vol 53, Agron monograph. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, pp 203–227Google Scholar
  268. Stuedemann JA, Hoveland CS (1998) Fescue endophyte: history and impact on animal agriculture. J Prod Agric 1:39–44. doi: 10.2134/jpa1988.0039 CrossRefGoogle Scholar
  269. Sullivan TJ, Faeth SH (2007) Local adaptation in Festuca arizonica infected by hybrid and nonhybrid Neotyphodium endophytes. Microb Ecol 55:697–704. doi: 10.1007/s00248-007-9312-4 CrossRefGoogle Scholar
  270. Sutherland BL, Hume DE, Tapper BA (1999) Allelopathic effects of endophyte-infected perennial ryegrass extracts on white clover seedlings. N Z J Agric Res 42:19–26. doi: 10.1080/00288233.1999.9513349 CrossRefGoogle Scholar
  271. Swarthout D, Harper E, Judd S, Gonthier D, Shyne R, Stowe T, Bultman T (2009) Measures of leaf-level water-use efficiency in drought stressed endophyte-infected and non-infected tall fescue grasses. Environ Exp Bot 66:88–93. doi: 10.1016/j.envexpbot.2008.12.002 CrossRefGoogle Scholar
  272. Takach JE, Mittal S, Swoboda GA, Bright SK, Trammell MA, Hopkins AA, Young CA (2012) Genotypic and chemotypic diversity of Neotyphodium endophytes in tall fescue from Greece. Appl Environ Microbiol 78:5501–5510. doi: 10.3852/11-403 PubMedCentralPubMedCrossRefGoogle Scholar
  273. Takai T, Sanada Y, Yamada T (2010) Influence of the fungal endophyte Neotyphodium uncinatum on the persistency and competitive ability of meadow fescue (Festuca pratensis Huds.). Grassland Sci 56:59–64. doi: 10.1111/j.1744-697X.2010.00175.x CrossRefGoogle Scholar
  274. Tanaka A, Tapper BA, Popay A, Parker EJ, Scott B (2005) A symbiosis expressed non-ribosomal peptide synthetase from a mutualistic fungal endophyte of perennial ryegrass confers protection to the symbiotum from insect herbivory. Mol Microbiol 57:1036–1050. doi: 10.1111/j.1365-2958.2005.04747.x PubMedCrossRefGoogle Scholar
  275. Tapper BA, Lane GA (2004) Janthitrems found in a Neotyphodium endophyte of perennial ryegrass. In: Kallenbach R, Rosenkrans CJ, Lock TR (eds) 5th international symposium on Neotyphodium/grass interactions. Fayetteville, Arkansas, No. 301Google Scholar
  276. Thom ER, Popay AJ, Hume DE, Fletcher LR (2012) Evaluating the performance of endophytes in farm systems to improve farmer outcomes – a review. Crop Pasture Sci 63:927–943. doi: 10.1071/cp12152 CrossRefGoogle Scholar
  277. Thom ER, Popay AJ, Waugh CD, Minneé EMK (2014) Impact of novel endophytes in perennial ryegrass on herbage production and insect pests from pastures under dairy cow grazing in northern New Zealand. Grass Forage Sci 69:191–204. doi: 10.1111/gfs.12040 CrossRefGoogle Scholar
  278. Thomas JL, West CP, Malinowski DP (2013) Summer dormancy and survival of tall fescue in relation to endophyte presence. In: Michalk DL, Millar GD, Badgery WB, Broadfoot KM (eds) Proceedings of the 22nd International Grassland Congress. New South Wales, Department of Primary Industry, Sydney/Orange, pp 143–144Google Scholar
  279. Timper P (2009) Nematodes. In: Fribourg HA, Hannaway DB, West CP (eds) Tall fescue for the twenty-first century, vol 53, Agron monograph. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, pp 151–156Google Scholar
  280. Tor-Agbidye J, Blythe LL, Craig AM (2001) Correlation of endophyte toxins (ergovaline and lolitrem B) with clinical disease: fescue foot and perennial ryegrass staggers. Vet Hum Toxicol 43:140–146PubMedGoogle Scholar
  281. van Zijll de Jong E, Dobrowolski MP, Bannan NR, Stewart AV, Smith KF, Spangenberg GC, Forster JW (2008) Global genetic diversity of the perennial ryegrass fungal endophyte Neotyphodium lolii. Crop Sci 48:1487–1501. doi: 10.2135/cropsci2007.11.0641 CrossRefGoogle Scholar
  282. Vázquez de Aldana BR, Zabalgogeazcoa I, Garcia CA, Garcia CB (2003) Ergovaline occurrence in grasses infected by fungal endophytes of semi-arid pastures in Spain. J Sci Food Agric 83:347–353. doi: 10.1002/jsfa.1319 CrossRefGoogle Scholar
  283. Vázquez de Aldana BR, Romo M, García-Ciudad A, Petisco C, García-Criado B (2011) Infection with the fungal endophyte Epichloë festucae may alter the allelopathic potential of red fescue. Ann Appl Biol 159:281–290. doi: 10.1111/j.1744-7348.2011.00495.x CrossRefGoogle Scholar
  284. Vázquez de Aldana BR, García-Ciudad A, García-Criado B, Vicente-Tavera S, Zabalgogeazcoa I (2013a) Fungal endophyte (Epichloë festucae) alters the nutrient content of Festuca rubra regardless of water availability. PLoS One 8, e84539. doi: 10.1371/journal.pone.0084539 PubMedCentralPubMedCrossRefGoogle Scholar
  285. Vázquez de Aldana BR, Gundel PE, García-Criado B, García Ciudad A, García Sánchez A, Zabalgogeazcoa I (2013b) Germination response of endophytic Festuca rubra seeds in the presence of arsenic. Grass Forage Sci 69:462–469. doi: 10.1111/gfs.12049 CrossRefGoogle Scholar
  286. Vázquez de Aldana BR, Zabalgogeazcoa I, García-Ciudad A, García-Criado B (2013c) An Epichloë endophyte affects the competitive ability of Festuca rubra against other grassland species. Plant Soil 362:201–213. doi: 10.1007/s11104-012-1283-7 CrossRefGoogle Scholar
  287. Volaire F, Lelièvre F (2001) Drought survival in Dactylis glomerata and Festuca arundinacea under similar rooting conditions in tubes. Plant Soil 229:225–234. doi: 10.1023/a:1004835116453 CrossRefGoogle Scholar
  288. Volaire F, Conéjero G, Lelièvre F (2001) Drought survival and dehydration tolerance in Dactylis glomerata and Poa bulbosa. Funct Plant Biol 28:743–754. doi: 10.1071/PP00162 CrossRefGoogle Scholar
  289. Volaire F, Barkaoui K, Norton M (2014) Designing resilient and sustainable grasslands for a drier future: adaptive strategies, functional traits and biotic interactions. Eur J Agron 52:81–89. doi: 10.1016/j.eja.2013.10.002 CrossRefGoogle Scholar
  290. Wäli PR, Helander M, Nissinen O, Saikkonen K (2006) Susceptibility of endophyte-infected grasses to winter pathogens (snow molds). Can J Bot 84:1043–1051. doi: 10.1139/b06-075 CrossRefGoogle Scholar
  291. Waller JC (2009) Endophyte effects on cattle. In: Fribourg HA, Hannaway DB, West CP (eds) Tall fescue for the twenty-first century, vol 53, Agron monograph. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, pp 289–310Google Scholar
  292. Wang ZF, Li CJ, Jin WJ, Nan ZB (2009) Effect of Neotyphodium endophyte infection on salt tolerance of Hordeum brevisubulatum (Trin.) Link. Acta Agrestia Sin 17:88–92Google Scholar
  293. Watson RH, Keogh RG, McDonald MF (1999) Ewe reproductive performance and growth rate of suckling-lambs on endophyte-infected perennial ryegrass pasture. In: Woodfield DR, Matthew C (eds) Ryegrass endophyte – an essential New Zealand symbiosis, vol 7, Grassland research and practice series. New Zealand Grassland Association, Palmerston North, pp 19–26Google Scholar
  294. Welty RE, Barker RE, Azevedo MD (1991) Reaction of tall fescue infected and noninfected by Acremonium coenophialum to Puccinia graminis sub sp. graminicola. Plant Dis 75:883–886CrossRefGoogle Scholar
  295. West CP (1994) Physiology and drought tolerance of endophyte-infected grasses. In: Bacon CW, White JF (eds) Biotechnology of endophytic fungi of grasses. CRC Press, Boca Raton, pp 87–99Google Scholar
  296. West CP, Turner K, Phillips JM, Izekor E (1989) Water relations and pest responses to endophyte. In: Proceedings tall fescue toxicosis workshop, Southern Regional Information Exchange Group-37, Atlanta, pp 23–25. doi: 10.2134/agronj1993.00021962008500020019x
  297. West CP, Izekor E, Turner KE, Elmi AA (1993) Endophyte effects on growth and persistence of tall fescue along a water-supply gradient. Agron J 85:264–270CrossRefGoogle Scholar
  298. Wheatley WM, Nicol HI, Hunt ER, Nikandrow A, Cother N (2001) An association between perennial ryegrass endophyte, a leaf spot caused by (Pyrenophora semeniperda) and preferential grazing by sheep. In: Paul VH, Dapprick PD (eds) The 3rd international conference on harmful and beneficial microorganisms in Grasslands. Pastures and Turf, Universitat Paderborn, Soest, pp 71–75Google Scholar
  299. White JF Jr, Cole GT (1985) Endophyte-host associations in forage grasses. III. In vitro inhibition of fungi by Acremonium coenophialum. Mycologia 77:487–489. doi: 10.2307/3793206 CrossRefGoogle Scholar
  300. Wilkinson HH, Siegel MR, Blankenship JD, Mallory AC, Bush LP, Schardl CL (2000) Contribution of fungal loline alkaloids to protection from aphids in a grass-endophyte mutualism. MPMI 13:1027–1033PubMedCrossRefGoogle Scholar
  301. Yates SG, Fenster JC, Bartelt RJ (1989) Assay of tall fescue seeds extracts, fractions, and alkaloids using the large milkweed bug. J Agric Food Chem 37:354–357. doi: 10.1021/jf00086a018 CrossRefGoogle Scholar
  302. Yin L, Ren A, Wei M, Wu L, Zhou Y, Li X, Gao Y (2014) Neotyphodium coenophialum-infected tall fescue and its potential application in the phytoremediation of saline soils. Int J Phytoremediation 16:235–246. doi: 10.1080/15226514.2013.773275 PubMedCrossRefGoogle Scholar
  303. Young WC III, Silberstein TB (2012) The Oregon grass seed industry. In: Young CA, Aiken GE, McCulley RL, Strickland JR, Schardl CL (eds) Epichloae, endophytes of cool season grasses: implications, utilization and biology. The Samuel Roberts Noble Foundation, Ardmore, pp 49–52Google Scholar
  304. Young CA, Hume DE, McCulley RL (2013) Fungal endophytes of tall fescue and perennial ryegrass: pasture friend or foe? J Anim Sci 91:2379–2394. doi: 10.2527/jas.2012-5951 PubMedCrossRefGoogle Scholar
  305. Yue Q, Miller CJ, White JF Jr, Richardson MD (2000) Isolation and characterization of fungal inhibitors from Epichloë festucae. J Agric Food Chem 48:4687–4692. doi: 10.1021/jf990685q PubMedCrossRefGoogle Scholar
  306. Zabalgogeazcoa I, Bony S (2005) Neotyphodium research and application in Europe. In: Roberts C, West CP, Spiers D (eds) Neotyphodium in cool-season grasses. Blackwell Publishing, Ames, pp 23–33CrossRefGoogle Scholar
  307. Zabalgogeazcoa I, Vázquez de Aldana BR, Criado BG, Ciudad AG (1999) The infection of Festuca rubra by the fungal endophyte Epichloe festucae in Mediterranean permanent grasslands. Grass Forage Sci 54:91–95. doi: 10.1046/j.1365-2494.1999.00155.x CrossRefGoogle Scholar
  308. Zamani N, Sabzalian MR, Khoshgoftarmanesh AH, Afyuni M (2015) Neotyphodium endophyte changes phytoextraction of Zinc in Festuca arundinacea and Lolium perenne. Int J Phytoremediation 17:456–463. doi: 10.1080/15226514.2014.922919 PubMedCrossRefGoogle Scholar
  309. Zaurov DE, Bonos S, Murphy JA, Richardson M, Belanger F (2001) Endophyte infection can contribute to aluminum tolerance in fine fescues. Crop Sci 41:1981–1984. doi: 10.2135/cropsci2001.1981 CrossRefGoogle Scholar
  310. Zhang XX, Li CJ, Nan ZB (2010) Effects of cadmium stress on growth and anti-oxidative systems in Achnatherum inebrians symbiotic with Neotyphodium gansuense. J Hazard Mater 175:703–709. doi: 10.1016/j.jhazmat.2009.10.066 PubMedCrossRefGoogle Scholar
  311. Zhang XX, Li CJ, Nan ZB (2011) Effects of salt and drought stress on alkaloid production in endophyte-infected drunken horse grass (Achnatherum inebrians). Biochem Syst Ecol 39:471. doi: 10.1016/j.bse.2011.06.016 CrossRefGoogle Scholar
  312. Zhang XX, Li CJ, Nan ZB, Matthew C (2012a) Neotyphodium endophyte increases Achnatherum inebrians (drunken horse grass) resistance to herbivores and seed predators. Weed Res 52:70–78. doi: 10.1111/j.1365-3180.2011.00887.x CrossRefGoogle Scholar
  313. Zhang XX, Li CJ, Nan ZB (2012b) Effects of cadmium stress on seed germination and seedling growth of Elymus dahuricus infected with the Neotyphodium endophyte. Sci China Life Sci 55:793–799. doi: 10.1007/s11427-012-4359-y PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • David E. Hume
    • 1
  • Geraldine D. Ryan
    • 2
  • Anaïs Gibert
    • 3
  • Marjo Helander
    • 4
    • 5
  • Aghafakhr Mirlohi
    • 6
  • Mohammad R. Sabzalian
    • 6
  1. 1.Forage Improvement GroupAgResearch Ltd.Palmerston NorthNew Zealand
  2. 2.School of Environmental SciencesUniversity of GuelphGuelphCanada
  3. 3.Department of Biological SciencesMacquarie UniversitySydneyAustralia
  4. 4.Section of Ecology, Department of BiologyUniversity of TurkuTurkuFinland
  5. 5.Natural Resources and Biomass Production ResearchNatural Resources Institute Finland (Luke)TurkuFinland
  6. 6.Department of Agronomy and Plant Breeding, College of AgricultureIsfahan University of TechnologyIsfahanIran

Personalised recommendations