Advertisement

Epidemiology, pathogenesis, and etiology of acute leukemia

  • Michael Fiegl
Chapter

Abstract

Acute myeloid (AML) and acute lymphocytic leukemia (ALL) are rare diseases, accounting for approximately 1.3% and 0.4% of all new cancer cases in the US.

Keywords

Acute Myeloid Leukemia Acute Lymphocytic Leukemia Acute Leukemia Acute Myeloid Leukaemia Paroxysmal Nocturnal Hemoglobinuria 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    SEER. SEER Stat Fact Sheets: Leukemia. Surveillance, Epidemiology, and End Results Program. http://seer.cancer.gov/statfacts/html/leuks.html. Accessed August 12, 2016.
  2. 2.
    SEER. SEER Stat Fact Sheets: Acute Myeloid Leukemia (AML). Surveillance, Epidemiology, and End Results Program. http://seer.cancer.gov/statfacts/html/amyl.html. Accessed August 12, 2016.
  3. 3.
    SEER. SEER Stat Fact Sheets: Acute Lymphocytic Leukemia (ALL). Surveillance, Epidemiology, and End Results Program. http://seer.cancer.gov/statfacts/html/amyl.html. Accessed August 12, 2016.
  4. 4.
    ZfKD. Leukaemias (ICD-10 C91-95). Cancer sites. http://www.krebsdaten.de/Krebs/EN/Home/homepage_node.html. Accessed August 12, 2016.
  5. 5.
    Cancer Research UK. Acute myeloid leukaemia (AML) incidence statistics. Cancer Statistics. http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancertype/leukaemia-aml. Accessed August 12, 2016.
  6. 6.
    Cancer Research UK. Acute lymphoblastic leukaemia (ALL) incidence statistics. Cancer Statistics. http://www.cancerresearchuk.org/health-professional/cancer-statistics/statisticsby-cancer-type/leukaemia-all. Accessed August 12, 2016.
  7. 7.
    Horton SJ, Huntly BJ. Recent advances in acute myeloid leukemia stem cell biology. Haematologica. 2012;97:966-974.Google Scholar
  8. 8.
    Arber DA, Brunning RD, LeBeau MM, et al. Acute myeloid leukaemia with recurrent genetic abnormalities. In: World Health Organization Classification of Tumours of Haematopooietic and Lymphoid Tissues. Swerdlow SH, Campo E, Harris NL, et al (eds). Lyon: IARC Press; 2008:110-123.Google Scholar
  9. 9.
    Mueller BU, Pabst T, Fos J, et al. ATRA resolves the differentiation block in t(15;17) acute myeloid leukemia by restoring PU.1 expression. Blood. 2006;107:3330-3338.Google Scholar
  10. 10.
    Dohner H, Estey EH, Amadori S, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115:453-474.Google Scholar
  11. 11.
    Marcucci G, Maharry K, Radmacher MD, et al. Prognostic significance of, and gene and microRNA expression signatures associated with, CEBPA mutations in cytogenetically normal acute myeloid leukemia with high-risk molecular features: a Cancer and Leukemia Group B Study. J Clin Oncol. 2008;26:5078-5087.Google Scholar
  12. 12.
    Devillier R, Gelsi-Boyer V, Brecqueville M, et al. Acute myeloid leukemia with myelodysplasiarelated changes are characterized by a specific molecular pattern with high frequency of ASXL1 mutations. Am J Hematol. 2012;87:659-662.Google Scholar
  13. 13.
    Miller CA, Wilson RK, Ley TJ. Genomic landscapes and clonality of de novo AML. N Engl J Med. 2013;369:1473.Google Scholar
  14. 14.
    Borowitz MJ, Chan JKC. Precursor lymphoid neoplasms. In: World Health Organization Classification of Tumours of Haematopooietic and Lymphoid Tissues. Swerdlow SH, Campo E, Harris NL, et al (eds). Lyon: IARC Press; 2008:167-178.Google Scholar
  15. 15.
    Den Boer ML, van Slegtenhorst M, De Menezes RX, et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. 2009;10:125-134.Google Scholar
  16. 16.
    Mullighan CG, Su X, Zhang J, et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med. 2009;360:470-480.Google Scholar
  17. 17.
    Jabbour E, O’Brien S, Konopleva M, Kantarjian H. New insights into the pathophysiology and therapy of adult acute lymphoblastic leukemia. Cancer. 2015;121:2517-2528.Google Scholar
  18. 18.
    Holmfeldt L, Wei L, Diaz-Flores E, et al. The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat Genet. 2013;45:242-252.Google Scholar
  19. 19.
    Bizzozero OJ Jr, Johnson KG, Ciocco A. Radiation-related leukemia in Hiroshima and Nagasaki, 1946-1964. I. Distribution, incidence and appearance time. N Engl J Med. 1966;274:1095-1101.Google Scholar
  20. 20.
    Yoshinaga S, Mabuci K, Sirgurdson AJ, Doody MM, Ron E. Cancer risks among radiologists and radiologic technologists: review of epidemiologic studies. Radiology. 2004;233:313-321.Google Scholar
  21. 21.
    Shuryak I, Sachs RK, Hlatky L, et al. Radiation-induced leukemia at doses relevant to radiation therapy: modeling mechanisms and estimating risks. J Natl Cancer Inst. 2006;98:1794-1806.Google Scholar
  22. 22.
    Brandt L, Nilsson PG, Mitelman F. Occupational exposure to petroleum products in men with acute non-lymphocytic leukaemia. Br Med J. 1978;1:553.Google Scholar
  23. 23.
    Schnatter AR, Glass DC, Tang G, Irons RD, Rushton L. Myelodysplastic syndrome and benzene exposure among petroleum workers: an international pooled analysis. J Natl Cancer Inst. 2012;104:1724-1737.Google Scholar
  24. 24.
    Vlaanderen J, Lan Q, Kromhout H, Rothman N, Vermeulen R. Occupational benzene exposure and the risk of lymphoma subtypes: a meta-analysis of cohort studies incorporating three study quality dimensions. Environ Health Perspect. 2011;119:159-167.Google Scholar
  25. 25.
    Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 2003;348:1625-1638.Google Scholar
  26. 26.
    Pogoda JM, Preston-Martin S, Nichols PW, Ross PK. Smoking and risk of acute myeloid leukemia: results from a Los Angeles County case-control study. Am J Epidemiol. 2002;155:546-553.Google Scholar
  27. 27.
    Fernberg P, Odenbro A, Bellocco R, et al. Tobacco use, body mass index, and the risk of leukemia and multiple myeloma: a nationwide cohort study in Sweden. Cancer Res. 2007;67:5983-5986.Google Scholar
  28. 28.
    Pogoda JM, Nichols PW, Preston-Martin S. Alcohol consumption and risk of adult-onset acute myeloid leukemia: results from a Los Angeles County case-control study. Leuk Res. 2004;28:927-931.Google Scholar
  29. 29.
    Rota M, Porta L, Pelucchi C, et al. Alcohol drinking and risk of leukemia-a systematic review and meta-analysis of the dose-risk relation. Cancer Epidemiol. 2014;38:339-345.Google Scholar
  30. 30.
    Menegaux F, Ripert M, Hemon D, Clavel J. Maternal alcohol and coffee drinking, parental smoking and childhood leukaemia: a French population-based case-control study. Paediatr Perinat Epidemiol. 2007;21:293-299.Google Scholar
  31. 31.
    Shu XO, Ross JA, Pendergrass TW, Reaman GH, Lampkin B, Robison LL. Parental alcohol consumption, cigarette smoking, and risk of infant leukemia: a Childrens Cancer Group study. J Natl Cancer Inst. 1996;88:24-31.Google Scholar
  32. 32.
    Creutzig U, van den Heuvel-Eibrink MM, Gibson B, et al. Diagnosis and management of acute myeloid leukemia in children and adolescents: recommendations from an international expert panel. Blood. 2012;120:3187-3205.Google Scholar
  33. 33.
    Alter BP. Bone marrow failure syndromes in children. Pediatr Clin North Am. 2002;49:973-988.Google Scholar
  34. 34.
    West AH, Godley LA, Churpek JE. Familial myelodysplastic syndrome/acute leukemia syndromes: a review and utility for translational investigations. Ann N Y Acad Sci. 2014;1310111-118.Google Scholar
  35. 35.
    Arber DA, Brunning RD, Orazi A, et al. Acute myeloid leukaemia with myelodysplasia-related changes. In: World Health Organization Classification of Tumours of Haematopooietic and Lymphoid Tissues. Swerdlow SH, Campo E, Harris NL, et al (eds). Lyon: IARC Press; 2008:124-126.Google Scholar
  36. 36.
    Malcovati L, Porta MG, Pascutto C, et al. Prognostic factors and life expectancy in myelodysplastic syndromes classified according to WHO criteria: a basis for clinical decision making. J Clin Oncol. 2005;23:7594-7603.Google Scholar
  37. 37.
    Greenberg PL, Tuechler H, Schanz J, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120:2454-2465.Google Scholar
  38. 38.
    Frederiksen H, Farkas DK, Christiansen CF, Hasselbalch HC, Sorensen HT. Chronic myeloproliferative neoplasms and subsequent cancer risk: a Danish population-based cohort study. Blood. 2011;118:6515-6520.Google Scholar
  39. 39.
    Gangat N, Caramazza D, Vaidya R, et al. DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol. 2011;29:392-397.Google Scholar
  40. 40.
    Harris JW, Koscick R, Lazarus HM, Eshleman JR, Medof ME. Leukemia arising out of paroxysmal nocturnal hemoglobinuria. Leuk Lymphoma. 1999;32:401-426.Google Scholar
  41. 41.
    Socie G, Henry-Amar M, Bacigalupo A, et al. Malignant tumors occurring after treatment of aplastic anemia. European Bone Marrow Transplantation-Severe Aplastic Anaemia Working Party. N Engl J Med. 1993;329:1152-1157.Google Scholar
  42. 42.
    Pagano L, Pulsoni A, Mele L, et al. Acute myeloid leukemia in patients previously diagnosed with breast cancer: experience of the GIMEMA group. Ann Oncol. 2001;12:203-207.Google Scholar
  43. 43.
    Borchmann P, Haverkamp H, Diehl V, et al. Eight cycles of escalated-dose BEACOPP compared with four cycles of escalated-dose BEACOPP followed by four cycles of baselinedose BEACOPP with or without radiotherapy in patients with advanced-stage hodgkin’s lymphoma: final analysis of the HD12 trial of the German Hodgkin Study Group. J Clin Oncol. 2011;29:4234-4242.Google Scholar
  44. 44.
    Vardiman JW, Arber DA, Brunning RD, et al. Therapy-related myeloid neoplasms. In: World Health Organization Classification of Tumours of Haematopooietic and Lymphoid Tissues. Swerdlow SH, Campo E, Harris NL, et al (eds). Lyon: IARC Press; 2008:127-129.Google Scholar
  45. 45.
    Schoch C, Kern W, Schnittger S, Hiddemann W, Haferlach T. Karyotype is an independent prognostic parameter in therapy-related acute myeloid leukemia (t-AML): an analysis of 93 patients with t-AML in comparison to 1091 patients with de novo AML. Leukemia. 2004;18:120-125.Google Scholar
  46. 46.
    Super HJ, McCabe NR, Thirman MJ, et al. Rearrangements of the MLL gene in therapy-related acute myeloid leukemia in patients previously treated with agents targeting DNA-topoisomerase II. Blood. 1993;82:3705-3711.Google Scholar
  47. 47.
    Lyman GH, Dale DC, Wolff DA, et al. Acute myeloid leukemia or myelodysplastic syndrome in randomized controlled clinical trials of cancer chemotherapy with granulocyte colony-stimulating factor: a systematic review. J Clin Oncol. 2010;28:2914-2924.Google Scholar
  48. 48.
    Tsukasaki K, Tobinai K. Human T-cell lymphotropic virus type I-associated adult T-cell leukemia-lymphoma: new directions in clinical research. Clin Cancer Res. 2014;20:5217-5225.Google Scholar
  49. 49.
    Brady G, MacArthur GJ, Farrell PJ. Epstein-Barr virus and Burkitt lymphoma. J Clin Pathol. 2007;60:1397-1402.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Michael Fiegl
    • 1
  1. 1.Department of Internal Medicine IIIKlinikum der Universität MünchenMunichGermany

Personalised recommendations