Predictive Control for Path-Following. From Trajectory Generation to the Parametrization of the Discrete Tracking Sequences

  • Ionela ProdanEmail author
  • Sorin Olaru
  • Fernando A.C.C. Fontes
  • Fernando Lobo Pereira
  • João Borges de Sousa
  • Cristina Stoica Maniu
  • Silviu-Iulian Niculescu
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 464)


This chapter discusses a series of developments on predictive control for path following via a priori generated trajectory for autonomous aerial vehicles. The strategy partitions itself into offline and runtime procedures with the assumed goal of moving the computationally expensive part into the offline phase and of leaving only tracking decisions to the runtime. First, it will be recalled that differential flatness represents a well-suited tool for generating feasible reference trajectory. Next, an optimization-based control problem which minimizes the tracking error for the nonholonomic system is formulated and further enhanced via path following mechanisms. Finally, possible changes of the selection of sampling times along the path and their impact on the predictive control formulation will be discussed in detail.


Model predictive control (MPC) Differential flatness Trajectory tracking Path following Autonomous aerial vehicles 



All the authors acknowledge the support of FCT/ANR PESSOA Project “Advanced control of a fleet of heterogeneous autonomous vehicles.” F.A.C.C. Fontes, F. Lobo Pereira, and J. Borges de Sousa acknowledge the support of LSTS - Laboratory of Underwater Systems and Technologies of FEUP. F.A.C.C. Fontes and F. Lobo Pereira acknowledge the support of FCT underlying the funding of the R& D Unit SYSTEC-Research Center for Systems and Technologies.


  1. 1.
    A.P. Aguiar, J.P. Hespanha, Trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty. IEEE Trans. Autom. Control 52(8), 1362–1379 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    R. Bencatel, M. Faied, J. Sousa, A.R. Girard, Formation Control with Collision Avoidance (2011), pp. 591–596Google Scholar
  3. 3.
    M. Burger, K.Y. Pettersen, Smooth transitions between trajectory tracking and path following for single vehicles and formations, in Estimation and Control of Networked Systems, (2010), pp. 115–120Google Scholar
  4. 4.
    A.C.D. Caldeira, F.A.C.C. Fontes. Model predictive control for path-following of nonholonomic systems in Proceedings of the 10th Portuguese Conference in Automatic Control (Coimbra, Portugal, 2010), pp. 374–379Google Scholar
  5. 5.
    C.L. Castillo, W. Moreno, K.P. Valavanis, Unmanned helicopter waypoint trajectory tracking using model predictive control, in Proceedings of the IEEE Mediterranean Conference on Control and Automation (2007), pp. 1–8Google Scholar
  6. 6.
    M. Daniel, J.C. Daubisse, The numerical problem of using bé zier curves and surfaces in the power basis. Comput. Aided Geom. Des. 6(2), 121–128 (1989)CrossRefzbMATHGoogle Scholar
  7. 7.
    J.A. De Doná, F. Suryawan, M.M. Seron, J. Lévine, A flatness-based iterative method for reference trajectory generation in constrained NMPC, in Nonlinear Model Predictive Control, vol. 384, LNCIS, ed. by L. Magni, D.M. Raimondo, F. Allgöwer (Springer, Heidelberg, 2009), pp. 325–333 CrossRefGoogle Scholar
  8. 8.
    L. Fagiano, M. Canale, M. Milanese, Set membership approximation of discontinuous NMPC laws, pp. 8636–8641Google Scholar
  9. 9.
    G.E. Farin, Curves and Surfaces for Computer-Aided Geometric Design: A Practical Guide. Morgan Kaufmann, 5th edn (2001)Google Scholar
  10. 10.
    R.T. Farouki, V.T. Rajan, On the numerical condition of polynomials in bernstein form. Comput. Aided Geomet. Des. 4(3), 191–216 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    T. Faulwasser, B. Kern, R. Findeisen, Model Predictive Path-following for Constrained Nonlinear Systems, pp. 8642–8647Google Scholar
  12. 12.
    F.A.C.C. Fontes, A general framework to design stabilizing nonlinear model predictive controllers. Syst. Control Lett. 42(2), 127–143 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    F.A.C.C. Fontes, D. Fontes, A. Caldeira, Model predictive control of vehicle formations (Optimization and Cooperative Control, Strategies, 2009), pp. 371–384Google Scholar
  14. 14.
    A. Grancharova, E.I. Grøtli, D. Ho, T.A. Johansen, Uavs trajectory planning by distributed MPC under radio communication path loss constraints. J. Intell. Robotic Syst. 1–20 (2014)Google Scholar
  15. 15.
    L. Grüne, J. Pannek, Nonlinear Model Predictive Control (Springer, 2011)Google Scholar
  16. 16.
    J. How, E. King, Y. Kuwata, Flight demonstrations of cooperative control for UAV teams, in AIAA 3rd Unmanned Unlimited Technical Conference, Workshop and Exhibit (2004), pp. 20–23Google Scholar
  17. 17.
    T. Keviczky, G.J. Balas, Software-enabled receding horizon control for autonomous unmanned aerial vehicle guidance. J. Guid. Control Dyn. 29(3), 680–694 (2006)CrossRefGoogle Scholar
  18. 18.
    H.J. Kim, D.H. Shim, S. Sastry, Nonlinear model predictive tracking control for rotorcraft-based unmanned aerial vehicles, in Proceedings of the 2002 American Control Conference, vol. 5 (IEEE, 2002) pp. 3576–3581Google Scholar
  19. 19.
    J. Lévine, Analysis and control of nonlinear systems: A flatness-based approach (Springer, Hidelberg, 2009)Google Scholar
  20. 20.
    D. Mellinger, N. Michael, V. Kumar, Trajectory generation and control for precise aggressive maneuvers with quadrotors. Int. J. Robotics Res. 027–36 (2012)Google Scholar
  21. 21.
    R.B. Patel, P.J. Goulart, Trajectory generation for aircraft avoidance maneuvers using online optimization. J. Guid. Control Dyn. 34(1), 218–230 (2011)CrossRefGoogle Scholar
  22. 22.
    I. Prodan, R. Bencatel, S. Olaru, J. Sousa, C. Stoica, S.I. Niculescu, Predictive control for autonomous aerial vehicles trajectory tracking, in Proceedings of the IFAC Nonlinear Model Predictive Control Conference (Noordwijkerhout, The Netherlands, 23–27 August 2012), pp. 508–513Google Scholar
  23. 23.
    I. Prodan, S. Olaru, R. Bencatel, J. Sousa, C. Stoica, S.I. Niculescu, Receding horizon flight control for trajectory tracking of autonomous aerial vehicles. Control Eng. Pract. 21(10), 1334–1349 (2013)CrossRefGoogle Scholar
  24. 24.
    I. Prodan, S. Olaru, F.A.C.C. Fontes, C. Stoica, S.-I. Niculescu, A predictive control-based algorithm for path following of autonomous aerial vehicles, in 2013 IEEE International Conference on Control Applications (CCA) (IEEE, 2013), pp. 1042–1047Google Scholar
  25. 25.
    J.B. Rawlings, D.Q. Mayne, Model Predictive Control: Theory and Design (2009)Google Scholar
  26. 26.
    A.P. Schoellig, F.L. Mueller, R. D’Andrea, Optimization-based iterative learning for precise quadrocopter trajectory tracking. Auton. Robots 33(1–2), 103–127 (2012)CrossRefGoogle Scholar
  27. 27.
    T. Schouwenaars, M. Valenti, E. Feron, J. How, Implementation and flight test results of milp-based uav guidance, in Aerospace Conference (IEEE, 2005), pp. 1–13Google Scholar
  28. 28.
    L.L. Schumaker, Spline Functions: Basic Theory (Cambridge University Press, 2007)Google Scholar
  29. 29.
    H. Sira-Ramírez, S. Agrawal, Differential Flatness (Marcel Dekker, New York, 2004)Google Scholar
  30. 30.
    F. Stoican, I. Prodan, D. Popescu, Flat trajectory generation for way-points relaxations and obstacle avoidance, in The 23st IEEE Mediterranean Conference on Control and Automation (2015), pp. 729–734Google Scholar
  31. 31.
    F. Suryawan, Constrained trajectory generation and fault tolerant control based on differential flatness and B-splines. Ph.D thesis, School of Electrical Engineering and Computer Science (The University of Newcastle, Australia, 2012)Google Scholar
  32. 32.
    F. Suryawan, J. De Dona, M. Seron, Methods for trajectory generation in a magnetic-levitation system under constraints, in 18th Mediterranean Conference on Control and Automation (2010), pp. 945–950Google Scholar
  33. 33.
    J.H. Wilkinson, The Algebraic Eigenvalue Problem, vol. 155 (Oxford University Press, 1965)Google Scholar
  34. 34.
    F. Yamaguchi, F. Yamaguchi, Curves and Surfaces in Computer Aided Geometric Design (Springer, Berlin, 1988) CrossRefzbMATHGoogle Scholar
  35. 35.
    S. Yu, X. Li, H. Chen, F. Allgower, Nonlinear model predictive control for path following problems. In In Proceedings of the IFAC Nonlinear Model Predictive Control Conference (Noordwijkerhout, The Netherlands, 23–27 August 2012), pp. 508–513Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ionela Prodan
    • 1
    Email author
  • Sorin Olaru
    • 2
  • Fernando A.C.C. Fontes
    • 4
  • Fernando Lobo Pereira
    • 4
  • João Borges de Sousa
    • 5
  • Cristina Stoica Maniu
    • 2
  • Silviu-Iulian Niculescu
    • 3
  1. 1.Laboratory of Conception and Integration of Systems (LCIS EA 3747)Université Grenoble AlpesValenceFrance
  2. 2.Laboratory of Signals and SystemsCentraleSupélec-CNRS-Université Paris-Sud, Université Paris-SaclayGif-sur-YvetteFrance
  3. 3.Laboratory of Signals and Systems (L2S, UMR CNRS 8506)CentraleSupélec-CNRS-Université Paris-Sud, Université Paris-SaclayGif-sur-YvetteFrance
  4. 4.SYSTEC—Faculty of EngineeringPorto University and ISR-PortoPortoPortugal
  5. 5.LSTS—Faculty of EngineeringPorto UniversityPortoPortugal

Personalised recommendations