Advertisement

Physarum-Based Memristors for Computer Music

  • Edward Braund
  • Raymond Sparrow
  • Eduardo Miranda
Chapter
Part of the Emergence, Complexity and Computation book series (ECC, volume 21)

Abstract

We present results into harnessing the memristive characteristics of Physarum polycephalum for computer music. Memristors are the recently discovered fourth fundamental passive circuit element that relates magnetic flux linkage and charge. Unlike the three established fundamental circuit elements, namely the capacitor, inductor, and resistor, the memristor is non-linear. The plasmodium of Physarum polycephalum is an amorphous unicellular organism that has been discovered to exhibit memristive qualities. We confirm findings that the protoplasmic tube of Physarum polycephalum exhibits memristive properties. We conduct a study that investigates how the memristive qualities of the organism may be used to generate musical responses to seed material. Following on, we briefly present an artefact of our research that takes the form of a piece of music composed for live performance. In the final section, we discuss our future work. Here we offer an insight as to how we plan on expanding the usability of Physarum-based memristors by stabilising the component and overcoming some of the constraints we present within this text.

Keywords

Voltage Range Physarum Polycephalum Pinch Point Computer Music Memristive System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Adamatzky, A.: Growing spanning trees in plasmodium machines. Kybernetes 37(2), 258–264 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Adamatzky, A.: If bz medium did spanning trees these would be the same trees as physarum built. Phys. Lett. A 373(10), 952–956 (2009)CrossRefzbMATHGoogle Scholar
  3. 3.
    Adamatzky, A.: Physarum Machines: Computers from Slime Mould, vol. 74. World Scientific (2010)Google Scholar
  4. 4.
    Adamatzky, A.: Slime mould logical gates: exploring ballistic approach (2010). arXiv:1005.2301
  5. 5.
    Adamatzky, A.: Slime mold solves maze in one pass, assisted by gradient of chemo-attractants. IEEE Trans. NanoBiosci. 11(2), 131–134 (2012)CrossRefGoogle Scholar
  6. 6.
    Adamatzky, A., Chua, L.: Memristor Networks. Springer Science & Business Media (2013)Google Scholar
  7. 7.
    Adamatzky, A., Jones, J.: Towards physarum robots: computing and manipulating on water surface. J. Bionic Eng. 5(4), 348–357 (2008)CrossRefGoogle Scholar
  8. 8.
    Adamatzky, A., Schubert, T.: Slime mold microfluidic logical gates. Mater. Today 17(2), 86–91 (2014)CrossRefGoogle Scholar
  9. 9.
    Adamatzky, A., Bull, L., Costello, B.D.L.: Unconventional computing 2007. Luniver Press (2007)Google Scholar
  10. 10.
    Adamatzky, A., Martínez, G.J., Chapa-Vergara, S.V., Asomoza-Palacio, R., Stephens, C.R.: Approximating mexican highways with slime mould. Nat. Comput. 10(3), 1195–1214 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Adamatzky, A., Erokhin, V., Grube, M., Schubert, T., Schumann, A.: Physarum chip project: growing computers from slime mould. IJUC 8(4), 319–323 (2012)Google Scholar
  12. 12.
    Braund, E., Miranda, E.: Music with unconventional computing: a system for physarum polycephalum sound synthesis. In: Aramaki, M., Derrien, O., Kronland-Martinet, R., Ystad, S. (eds.) CMMR 2013. LNCS, vol. 8905, pp. 175–189. Springer, Heidelberg (2014)Google Scholar
  13. 13.
    Braund, E., Miranda, E.R.: Unconventional computing in music. In: Proceedings of the 9th Conference on Interdisciplinary Musicology—CIM14. Berlin, Germany (2014)Google Scholar
  14. 14.
    Braund, E., Miranda, E.: BioComputer music: generating musical responses with physarum polycephalum-based memristors. In: Computer Music Multidisciplinary Research (CMMR): Music, Mind, and Embodiment. Plymouth, UK (2015)Google Scholar
  15. 15.
    Braund, E., Miranda, E.: Music with unconventional computing: granular synthesis with the biological computing substrate physarum polycephalum. In: Computer Music Multidisciplinary Research (CMMR): Music, Mind, and Embodiment. Plymouth, UK (2015)Google Scholar
  16. 16.
    Braund, E., Miranda, E.: Music with unconventional computing: towards a step sequencer from plasmodium of physarum polycephalum. In: Johnson, C., Carballal, A., Correia, J. (eds.) EvoMUSART 2015. LNCS, vol. 9027, pp. 15–26. Springer, Heidelberg (2015)Google Scholar
  17. 17.
    Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)CrossRefGoogle Scholar
  18. 18.
    Doornbusch, P.: Computer sound synthesis in 1951: the music of CSIRAC. Comput. Music J. 28(1), 10–25 (2004)CrossRefGoogle Scholar
  19. 19.
    Evangelidis, V., Tsompanas, M.A., Sirakoulis, G.C., Adamatzky, A.: Slime mould imitates development of roman roads in the balkans. J. Archaeol. Sci.: Rep. 2, 264–281 (2015)Google Scholar
  20. 20.
    Gale, E., Adamatzky, A., de Lacy Costello, B.: Slime mould memristors. BioNanoScience 1–8 (2013)Google Scholar
  21. 21.
    Gale, E., de Lacy Costello, B., Adamatzky, A.: Emergent spiking in non-ideal memristor networks. Microelectron. J. 45(11), 1401–1415 (2014)Google Scholar
  22. 22.
    Gale, E., Matthews, O., de Lacy Costello, B., Adamatzky, A.: Beyond markov chains, towards adaptive memristor network-based music generation. IJUC 10(3), 181–197 (2014)Google Scholar
  23. 23.
    Grimnes, S., Lütken, C.A., Martinsen, O.G.: Memristive properties of electro-osmosis in human sweat ducts. In: World Congress on Medical Physics and Biomedical Engineering, September 7–12, 2009, Munich, Germany, pp. 696–698. Springer (2009)Google Scholar
  24. 24.
    Johnsen, G.K.: An introduction to the memristor—a valuable circuit element in bioelectricity and bioimpedance. J. Electr. Bioimpedance 3(1), 20–28 (2012)Google Scholar
  25. 25.
    Kosta, S.P., Kosta, Y.P., Bhatele, M., Dubey, Y.M., Gaur, A., Kosta, S., Gupta, J., Patel, A., Patel, B.: Human blood liquid memristor. Int. J. Med. Eng. Inform. 3(1), 16–29 (2011)CrossRefGoogle Scholar
  26. 26.
    Miranda, E.R.: Harnessing the intelligence of physarum polycephalum for unconventional computing-aided musical composition. IJUC 10(3), 251–268 (2014)Google Scholar
  27. 27.
    Miranda, E.R., Adamatzky, A., Jones, J.: Sounds synthesis with slime mould of physarum polycephalum. J. Bionic Eng. 8(2), 107–113 (2011)CrossRefGoogle Scholar
  28. 28.
    Miranda, E., Braund, E.: Experiments in musical biocomputing: towards new kinds of processors for audio and music. In: A. Adamatzky (ed.) Advances in Unconventional Computing. Springer (In Press)Google Scholar
  29. 29.
    Pershin, Y.V., La Fontaine, S., Di Ventra, M.: Memristive model of amoeba learning. Phys. Rev. E 80(2), 21,926 (2009)Google Scholar
  30. 30.
    Ridgway, E., Durham, A.: Oscillations of calcium ion concentrations in physarum polycephalum. J. Cell Biol. 69(1), 223–226 (1976)CrossRefGoogle Scholar
  31. 31.
    Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80–83 (2008)CrossRefGoogle Scholar
  32. 32.
    Tsuda, S., Zauner, K.P., Gunji, Y.P.: Robot control with biological cells. Biosystems 87(2), 215–223 (2007)CrossRefGoogle Scholar
  33. 33.
    Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. J. Math. 58(345–363), 5 (1936)zbMATHGoogle Scholar
  34. 34.
    Volkov, A., Reedus, J., Mitchell, C.M., Tucket, C., Forde-Tuckett, V., Volkova, M.I., Markin, V.S., Chua, L.: Memristors in the electrical network of Aloe vera L. Plant Signal. Behav. 9(4), e29,056 (2014)Google Scholar
  35. 35.
    Von Neumann, J.: First draft of a report on the edvac. IEEE Ann. Hist. Comput. 15(4), 27–75 (1993)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Edward Braund
    • 1
  • Raymond Sparrow
    • 1
  • Eduardo Miranda
    • 1
  1. 1.Interdisciplinary Centre for Computer Music Research (ICCMR)Plymouth UniversityPlymouthUK

Personalised recommendations