Advertisement

Extreme Witnesses and Their Applications

  • Andrzej Lingas
  • Mia Persson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9486)

Abstract

We study the problem of computing the so called minimum and maximum witnesses for Boolean vector convolution. We also consider a generalization of the problem which is to determine for each positive coordinate of the convolution vector, q smallest (or, largest) witnesses, where q is the minimum of a parameter k and the number of witnesses for this coordinate. We term this problem the smallest k-witness problem or the largest k-witness problem, respectively. We also study the corresponding smallest and largest k-witness problems for Boolean matrix product. In both cases, we provide algorithmic solutions and applications to the aforementioned witness problems, among other things in string matching and computing the \((\min , +)\) vector convolution.

Keywords

Boolean vector convolution Boolean matrix product String matching Witnesses Minimum and maximum witnesses Time complexity Lightest triangles 

Notes

Acknowledgments

We thank Mirosław Kowaluk for valuable comments.

References

  1. 1.
    Aho, A. V., Hopcroft, J. E., Ullman, J.: The Design and Analysis of Computer Algorithms. Addison-Wesley Publishing Company, Reading (1974)Google Scholar
  2. 2.
    Alon, N., Galil, Z., Margalit, O., Naor, M.: Witnesses for Boolean matrix multiplication and for shortest paths. In: Proceedings 33rd Symposium on Foundations of Computer Science (FOCS), pp. 417–426 (1992)Google Scholar
  3. 3.
    Aumann, Y., Lewenstein, M., Lewenstein, N., Tsur, D.: Finding witnesses by peeling. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 28–39. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Alon, N., Naor, M.: Derandomization, witnesses for Boolean matrix multiplication and construction of perfect hash functions. Algorithmica 16, 434–449 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bremner, D., Chan, T.M., Demaine, E.D., Erickson, J., Hurtado, F., Iacono, J., Langerman, S., Taslakian, P.: Necklaces, convolutions, and X + Y. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 160–171. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Chan, T. M., Lewenstein, M.: Clustered integer 3SUM vis additive combinatorics. In: Proceedings 47th ACM Symposium on Theory of Computing (STOC 2015)Google Scholar
  7. 7.
    Chan, T.M.: More algorithms for all-pairs shortest paths in weighted graphs. SIAM J. Comput. 39(5), 2025–2089 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cohen, K., Yuster, R.: On minimum witnesses for Boolean matrix multiplication. Algorithmica 69(2), 431–442 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Crochemore, M., Rytter, W.: Text Algorithms. Oxford University Press, New York (1994)zbMATHGoogle Scholar
  10. 10.
    Czumaj, A., Kowaluk, M., Lingas, A.: Faster algorithms for finding lowest common ancestors in directed acyclic graphs. Theor. Comput. Sci. 380(1–2), 37–46 (2007). The special ICALP 2005 issueMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Czumaj, A., Lingas, A.: Finding a heaviest vertex-weighted triangle is not harder than matrix multiplication. SIAM J. Comput. 39(2), 431–444 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Fisher, M. J., Paterson, M. S.: String-matching and other products. In: Proceedings 7th SIAM-AMS Complexity of Computation, pp. 113–125 (1974)Google Scholar
  13. 13.
    Fomin, F.V., Kratsch, D., Novelli, J.: Approximating minimum cocolorings. Inf. P. Lett. 84(5), 285–290 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings 39th International Symposium on Symbolic and Algebraic Computation, pp. 296–303 (2014)Google Scholar
  15. 15.
    Le Gall, F.: Faster algorithms for rectangular matrix multiplication. In: Proceedings 53rd Symposium on Foundations of Computer Science (FOCS), pp. 514–523 (2012)Google Scholar
  16. 16.
    Gasieniec, L., Kowaluk, M., Lingas, A.: Faster multi-witnesses for Boolean matrix product. Inf. Process. Lett. 109, 242–247 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Muthukrishnan, S.: New results and open problems related to non-standard stringology. In: Galil, Z., Ukkonen, E. (eds.) CPM 1995. LNCS, vol. 937, pp. 298–317. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  18. 18.
    Shapira, A., Yuster, R., Zwick, U.: All-pairs bottleneck paths in vertex weighted graphs. Algorithmica 59(4), 621–633 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Yang, B., Chen, J., Lu, E., Zheng, S.Q.: A comparative study of efficient algorithms for partitioning a sequence into monotone subsequences. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007. LNCS, vol. 4484, pp. 46–57. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Vassilevska, V., Williams, R., Yuster, R.: Finding heaviest H-subgraphs in real weighted graphs, with applications. ACM Trans. Algorithms 6(3), 44:1–44:23 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Williams, V. V.: Multiplying matrices faster than Coppersmith-Winograd. In: Proceedings 44th Annual ACM Symposium on Theory of Computing (STOC), pp. 887–898 (2012)Google Scholar
  22. 22.
    Zwick, U.: All pairs shortest paths using bridging sets and rectangular matrix multiplication. J. ACM 49(3), 289–317 (2002)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Computer ScienceLund UniversityLundSweden
  2. 2.Department of Computer ScienceMalmö UniversityMalmöSweden

Personalised recommendations