Advertisement

An Efficient Shortest-Path Routing Algorithm in the Data Centre Network DPillar

  • Alejandro EricksonEmail author
  • Abbas Eslami Kiasari
  • Javier Navaridas
  • Iain A. Stewart
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9486)

Abstract

DPillar has recently been proposed as a server-centric data centre network and is combinatorially related to the well-known wrapped butterfly network. We explain the relationship between DPillar and the wrapped butterfly network before proving a symmetry property of DPillar. We use this symmetry property to establish a single-path routing algorithm for DPillar that computes a shortest path and has time complexity \(O(k\log (n))\), where k parameterizes the dimension of DPillar and n the number of ports in its switches. Moreover, our algorithm is trivial to implement, being essentially a conditional clause of numeric tests, and improves significantly upon a routing algorithm earlier employed for DPillar. A secondary and important effect of our work is that it emphasises that data centre networks are amenable to a closer combinatorial scrutiny that can significantly improve their computational efficiency and performance.

Keywords

Data centre networks Routing algorithms Shortest paths 

Notes

Acknowledgement

This work has been funded by the Engineering and Physical Sciences Research Council (EPSRC) through grants EP/K015680/1 and EP/K015699/1.

References

  1. 1.
    Abts, D., Marty, M.R., Wells, P.M., Klausler, P., Liu, H.: Energy proportional datacenter networks. In: Proceedings of the 37th Annual International Symposium on Computer Architecture, pp. 338–347 (2010)Google Scholar
  2. 2.
    Abu-Libdeh, H., Costa, P., Rowstron, A., OShea, G., Donnelly, A.: Symbiotic routing in future data centers. SIGCOMM Comput. Comm. Rev. 40(4), 51–62 (2010)CrossRefGoogle Scholar
  3. 3.
    Ahn, J.H., Binkert, N., Davis, A., McLaren, M., Schreiber, R.S.: HyperX: topology, routing, and packaging of efficient large-scale networks. In: Proceedings of the Conference on High Performance Computer Networking, Storage and Analysis, Article 41 (2009)Google Scholar
  4. 4.
    Al-Fares, M., Loukissas, A., Vahdat, A.: A scalable, commodity data center network architecture. SIGCOMM Comput. Comm. Rev. 38(4), 63–74 (2008)CrossRefGoogle Scholar
  5. 5.
    Greenberg, A., Hamilton, J.R., Jain, N., Kandula, S., Kim, C., Lahiri, P., Maltz, D.A., Patel, P., Sengupta, S.: VL2: a scalable and flexible data center network. SIGCOMM Comput. Comm. Rev. 39(4), 51–62 (2009)CrossRefGoogle Scholar
  6. 6.
    Guo, D., Chen, T., Li, D., Li, M., Liu, Y., Chen, G.: Expandible and cost-effective network structures for data centers using dual-port servers. IEEE Trans. Comput. 62(7), 1303–1317 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Guo, C., Wu, H., Tan, K., Shi, L., Zhang, Y., Lu, S.: DCell: a scalable and fault-tolerant network structure for data centers. SIGCOMM Comput. Comm. Rev. 38(4), 75–86 (2008)CrossRefGoogle Scholar
  8. 8.
    Guo, C., Lu, G., Li, D., Wu, H., Zhang, X., Shi, Y., Tian, C., Zhang, Y., Lu, S.: BCube: a high performance, server-centric network architecture for modular data centers. SIGCOMM Comput. Comm. Rev. 39(4), 63–74 (2009)CrossRefGoogle Scholar
  9. 9.
    Heller, B., Seetharaman, S., Mahadevan, P., Yiakoumis, Y., Sharma, P., Banerjee, S., McKeown, N.: ElasticTree: saving energy in data center networks. In: Proceedings of the 7th USENIX Conference on Networked Systems Design and Implementation, pp. 249–264 (2006)Google Scholar
  10. 10.
    Li, C., Guo, D., Wu, H., Tan, K., Zhang, K., Lu, S.: FiConn: using backup port for server interconnection in data centers. In: Proceedings of INFOCOM, pp. 2276–2285 (2009)Google Scholar
  11. 11.
    Li, D., Wu, J.: On data center network architectures for interconnecting dual-port servers. IEEE Trans. Comput. 64(11), 3210–3222 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Liao, Y., Yin, J., Yin, D., Gao, L.: DPillar: dual-port server interconnection network for large scale data centers. Comput. Netw. 56(8), 2132–2147 (2012)CrossRefGoogle Scholar
  13. 13.
    Liu, Y., Muppala, J.K., Veeraraghavan, M., Lin, D., Katz, J.: Data Centre Networks: Topologies, Architectures and Fault-Tolerance Characteristics. Springer, New York (2013)CrossRefGoogle Scholar
  14. 14.
    Mysore, R.N., Pamboris, A., Farrington, N., Huang, N., Miri, P., Radhakrishnan, S., Subramanya, V., Vahdat, A.: Portland: a scalable fault-tolerant layer 2 data center network fabric. SIGCOMM Comput. Comm. Rev. 39(4), 39–50 (2009)CrossRefGoogle Scholar
  15. 15.
    Wang, C., Wang, C., Yuan, Y., Wei, Y.: MCube: a high performance and fault-tolerant network architecture for data centers. In: Proceedings of the International Conference on Computer Design and Applications, vol. 5, pp. V5-423-V5–427 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Alejandro Erickson
    • 1
    Email author
  • Abbas Eslami Kiasari
    • 2
  • Javier Navaridas
    • 2
  • Iain A. Stewart
    • 1
  1. 1.School of Engineering and Computing SciencesDurham University, Science LabsDurhamUK
  2. 2.School of Computer ScienceUniversity of ManchesterManchesterUK

Personalised recommendations