International Conference in Cryptology in India

Progress in Cryptology -- INDOCRYPT 2015 pp 180-197 | Cite as

Some Results Using the Matrix Methods on Impossible, Integral and Zero-Correlation Distinguishers for Feistel-Like Ciphers

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9462)

Abstract

While many recent publications have shown strong relations between impossible differential, integral and zero-correlation distinguishers for SPNs and Feistel-like ciphers, this paper tries to bring grist to the mill to this research direction by first, studying the Type-III, the Source-Heavy (SH) and the Target-Heavy (TH) Feistel-like ciphers regarding those three kinds of distinguishers. Second, this paper tries to make a link between the matrix methods used to find such distinguishers and the adjacency matrix of the graph of a Feistel-like cipher.

Keywords

Block ciphers Feistel-like ciphers Impossible differential Zero-correlation Integral Matrix \(\mathcal {U}\)-method and UID-method 

References

  1. 1.
    Arnault, F., Berger, T.P., Minier, M., Pousse, B.: Revisiting LFSRs for cryptographic applications. IEEE Trans. Inf. Theory 57(12), 8095–8113 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Berger, T.P., Minier, M., Thomas, G.: Extended generalized feistel networks using matrix representation. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 289–305. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  3. 3.
    Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack reduced to 31 rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999) Google Scholar
  4. 4.
    Blondeau, C., Bogdanov, A., Wang, M.: On the (In)equivalence of impossible differential and zero-correlation distinguishers for Feistel- and Skipjack-type ciphers. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 271–288. Springer, Heidelberg (2014) Google Scholar
  5. 5.
    Blondeau, C., Minier, M.: Analysis of impossible, integral and zero-correlation attacks on type-ii generalized Feistel networks using the matrix method. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 92–113. Springer, Heidelberg (2015) CrossRefGoogle Scholar
  6. 6.
    Blondeau, C., Minier, M.: Relations between Impossible, Integral and Zero-correlation Key-Recovery Attacks (extended version). Cryptology ePrint Archive, Report 2015/141 (2015). http://eprint.iacr.org/
  7. 7.
    Bogdanov, A., Leander, G., Nyberg, K., Wang, M.: Integral and multidimensional linear distinguishers with correlation zero. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 244–261. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  8. 8.
    Bogdanov, A., Rijmen, V.: Zero-correlation linear cryptanalysis of block ciphers. IACR Cryptology ePrint Arch. 2011, 123 (2011)Google Scholar
  9. 9.
    Bouillaguet, C., Dunkelman, O., Fouque, P.-A., Leurent, G.: New insights on impossible differential cryptanalysis. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 243–259. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  10. 10.
    Kim, J.-S., Hong, S.H., Sung, J., Lee, S.-J., Lim, J.-I., Sung, S.H.: Impossible differential cryptanalysis for block cipher structures. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 82–96. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  11. 11.
    Knudsen, L.: DEAL-a 128-bit block cipher. Complexity 258(2), 216 (1998)Google Scholar
  12. 12.
    Knudsen, L., Wagner, D.: Integral cryptanalysis nes/doc/uib/wp5/015. NESSIE Report (2001). http://www.cosic.esat.kuleuven.be/nessie/reports/phase2/uibwp5-015-1.pdf
  13. 13.
    Knudsen, L.R., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  14. 14.
    Luo, Y., Lai, X., Wu, Z., Gong, G.: A unified method for finding impossible differentials of block cipher structures. Inf. Sci. 263, 211–220 (2014)CrossRefGoogle Scholar
  15. 15.
    Soleimany, H., Nyberg, K.: Zero-correlation linear cryptanalysis of reduced-round LBlock. Des. Codes Crypt. 73(2), 683–698 (2014)MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Sun, B., Liu, Z., Rijmen, V., Li, R., Cheng, L., Wang, Q., Alkhzaimi, H., Li, C.: Links among impossible differential, integral and zero correlation linear cryptanalysis. Cryptology ePrint Archive, Report 2015/181 (2015). http://eprint.iacr.org/
  17. 17.
    Sun, B., Liu, Z., Rijmen, V., Li, R., Cheng, L., Wang, Q., Alkhzaimi, H., Li, C.: Links among impossible differential, integral and zero correlation linear cryptanalysis. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 95–115. Springer, Heidelberg (2015) CrossRefGoogle Scholar
  18. 18.
    Suzaki, T., Minematsu, K.: Improving the generalized Feistel. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 19–39. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  19. 19.
    Wu, S., Wang, M.: Automatic search of truncated impossible differentials for word-oriented block ciphers. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 283–302. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  20. 20.
    Yanagihara, S., Iwata, T.: Improving the permutation layer of type 1, type 3, source-heavy, and target-heavy generalized Feistel structures. IEICE Trans. 96–A(1), 2–14 (2013)CrossRefGoogle Scholar
  21. 21.
    Zhang, W., Su, B., Wu, W., Feng, D., Wu, C.: Extending higher-order integral: an efficient unified algorithm of constructing integral distinguishers for block ciphers. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 117–134. Springer, Heidelberg (2012) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.XLIM (UMR CNRS 7252)Université de LimogesLimoges CedexFrance
  2. 2.INRIA, INSA-Lyon, CITIUniversité de LyonLyonFrance

Personalised recommendations