Dynamic Demographic Analysis pp 285-310 | Cite as
Age-Specific Mortality and Fertility Rates for Probabilistic Population Projections
- 16 Citations
- 15 Mentions
- 707 Downloads
Abstract
The UN released official probabilistic population projections (PPP) for all countries for the first time in July 2014. These were obtained by projecting the period total fertility rate (TFR) and life expectancy at birth (e0) using Bayesian hierarchical models, yielding a large set of future trajectories of TFR and e0 for all countries and future time periods to 2100, sampled from their joint predictive distribution. Each trajectory was then converted to age-specific mortality and fertility rates, and population was projected using the cohort-component method. This yielded a large set of trajectories of future age- and sex-specific population counts and vital rates for all countries. In this chapter we describe the methodology used for deriving the age-specific mortality and fertility rates in the 2014 PPP, we identify limitations of these methods, and we propose several methodological improvements to overcome them. The methods presented in this chapter are implemented in the publicly available bayesPop R package.
Keywords
Bayesian hierarchical model Cohort-component method Life expectancy at birth Markov chain Monte Carlo Total fertility rate United Nations World Population ProspectsNotes
Acknowledgements
This research was supported by NIH grants R01 HD054511 and R01 HD070936. The views expressed in this article are those of the authors and do not necessarily reflect those of NIH or the United Nations. The authors are grateful to the editor for very helpful comments.
References
- Alders, M., Keilman, N., & Cruijsen, H. (2007). Assumptions for long-term stochastic population forecasts in 18 European countries. European Journal of Population, 23, 33–69.CrossRefGoogle Scholar
- Alho, J. M., Alders, M., Cruijsen, H., Keilman, N., Nikander, T., & Pham, D. Q. (2006). New forecast: Population decline postponed in Europe. Statistical Journal of the United Nations Economic Commission for Europe, 23, 1–10.Google Scholar
- Alho, J. M., Jensen, S. E. H., & Lassila, J. (2008). Uncertain demographics and fiscal sustainability. Cambridge/New York: Cambridge University Press.CrossRefGoogle Scholar
- Alkema, L., Raftery, A. E., Gerland, P., Clark, S. J., Pelletier, F., Buettner, T., & Heilig, G. K. (2011). Probabilistic projections of the total fertility rate for all countries. Demography, 48, 815–839.CrossRefGoogle Scholar
- Booth, H., Hyndman, R. J., Tickle, L., & de Jong, P. (2006). Lee-Carter mortality forecasting: A multi-country comparison of variants and extensions. Demographic Research, 15, 289–310.CrossRefGoogle Scholar
- Bos, E., Vu, M. T., Massiah, E., & Bulatao, R. (1994). World population projections 1994–95: Estimates and projections with related demographic statistics. Baltimore: Johns Hopkins University Press for the World Bank.Google Scholar
- Coale, A. J., & Demeny, P. G. (1966). Regional model life tables and stable populations. Princeton: Princeton University Press.Google Scholar
- Ediev, D. M. (2013). Comparative importance of the fertility model, the total fertility, the mean age and the standard deviation of age at childbearing in population projections. Presented at the Meeting of the International Union for the Scientific Study of Population, Busan. http://iussp.org/sites/default/files/event_call_for_papers/TF%20MS%20SD_what%20matters_StWr.pdf
- Gerland, P., Raftery, A. E., Ševčíková, H., Li, N., Gu, D., Spoorenberg, T., Alkema, L., Fosdick, B. K., Chunn, J. L., Lalic, N., Bay, G., Buettner, T., Heilig, G. K., & Wilmoth, J. (2014). World population stabilization unlikely this century. Science, 346, 234–237.CrossRefGoogle Scholar
- Greville, T. N. (1943). Short methods of constructing abridged life tables. The Record of the American Institute of Actuaries, XXXII, 1, 29–42.Google Scholar
- Keyfitz, N. (1981). The limits of population forecasting. Population and Development Review, 7, 579–593.CrossRefGoogle Scholar
- Lee, R. D., & Carter, L. (1992). Modeling and forecasting the time series of US mortality. Journal of the American Statistical Association, 87, 659–671.Google Scholar
- Lee, R. D., & Miller, T. (2001). Evaluating the performance of the Lee-Carter method for forecasting mortality. Demography, 38, 537–549.CrossRefGoogle Scholar
- Lee, R. D., & Tuljapurkar, S. (1994). Stochastic population forecasts for the United States: Beyond high, medium, and low. Journal of the American Statistical Association, 89, 1175–1189.CrossRefGoogle Scholar
- Leslie, P. H. (1945). On the use of matrices in certain population dynamics. Biometrika, 33, 183–212.CrossRefGoogle Scholar
- Li, N., & Gerland, P. (2009). Modelling and projecting the postponement of childbearing in low-fertility countries. Presented at the XXVI IUSSP International Population Conference. iussp2009.princeton.edu/papers/90315
- Li, N., & Gerland, P. (2011). Modifying the Lee-Carter method to project mortality changes up to 2100. Presented at the Annual Meeting of Population Association of America. http://paa2011.princeton.edu/abstracts/110555
- Li, N., & Lee, R. D. (2005). Coherent mortality forecasts for a group of populations: An extension of the Lee-Carter method. Demography, 42, 575–594.CrossRefGoogle Scholar
- Li, N., Lee, R. D., & Gerland, P. (2013). Extending the Lee-Carter method to model the rotation of age patterns of mortality decline for long-term projections. Demography, 50, 2037–2051.CrossRefGoogle Scholar
- Lutz, W., & Samir, K. C. (2010). Dimensions of global population projections: What do we know about future population trends and structures? Philosophical Transactions of the Royal Society B, 365, 2779–2791.CrossRefGoogle Scholar
- Lutz, W., Sanderson, W. C., & Scherbov, S. (1996). Probabilistic population projections based on expert opinion. In Lutz, W. (Ed.), The future population of the world: What can we assume today? (pp. 397–428). London: Earthscan Publications Ltd. Revised 1996 edition.Google Scholar
- Lutz, W., Sanderson, W. C., & Scherbov, S. (1998). Expert-based probabilistic population projections. Population and Development Review, 24, 139–155.CrossRefGoogle Scholar
- Lutz, W., Sanderson, W. C., & Scherbov, S. (2004). The end of world population growth in the 21st century: New challenges for human capital formation and sustainable development. Sterling: Earthscan.Google Scholar
- National Research Council. (2000). Beyond six billion: Forecasting the world’s population. Washington, DC: National Academy Press.Google Scholar
- Pflaumer, P. (1988). Confidence intervals for population projections based on Monte Carlo methods. International Journal of Forecasting, 4, 135–142.CrossRefGoogle Scholar
- Preston, S. H., Heuveline, P., & Guillot, M. (2001). Demography: Measuring and modeling population processes. Malden: Blackwell.Google Scholar
- Raftery, A. E., Li, N., Ševčíková, H., Gerland, P., & Heilig, G. K. (2012). Bayesian probabilistic population projections for all countries. Proceedings of the National Academy of Sciences, 109, 13915–13921.Google Scholar
- Raftery, A. E., Chunn, J. L., Gerland, P., & Ševčíková, H. (2013). Bayesian probabilistic projections of life expectancy for all countries. Demography, 50, 777–801.CrossRefGoogle Scholar
- Raftery, A. E., Alkema, L., & Gerland, P. (2014a). Bayesian population projections for the United Nations. Statistical Science, 29, 58–68.Google Scholar
- Raftery, A. E., Lalic, N., & Gerland, P. (2014b). Joint probabilistic projection of female and male life expectancy. Demographic Research, 30, 795–822.Google Scholar
- Reniers, G., Slaymaker, E., Nakiyingi-Miiro, J., Nyamukapa, C., Crampin, A. C., Herbst, K., Urassa, M., Otieno, F., Gregson, S., Sewe, M., Michael, D., Lutalo, T., Hosegood, V., Kasamba, I., Price, A., Nabukalu, D., Mclean, E., Zaba, B., & Network, A. (2014). Mortality trends in the era of antiretroviral therapy: Evidence from the network for analysing longitudinal population based HIV/AIDS data on Africa (ALPHA). AIDS, 28, S533–S542.CrossRefGoogle Scholar
- Ševčíková, H., & Raftery, A. E. (2014). bayesPop: Probabilistic population projection. R package version 5.4-0.Google Scholar
- Ševčíková, H., Raftery, A. E., & Gerland, P. (2014). Bayesian probabilistic population projections: Do it yourself. Presented at the Annual Meeting of Population Association of America. http://paa2014.princeton.edu/abstracts/141301
- Sharrow, D. J., Clark, S. J., & Raftery A. E. (2014). Modeling age-specific mortality for countries with generalized HIV epidemics. PLoS One, 9, e96447.CrossRefGoogle Scholar
- Stoto, M. A. (1983). The accuracy of population projections. Journal of the American Statistical Association, 78, 13–20.CrossRefGoogle Scholar
- Thatcher, A. R., Kannisto, V., & Vaupel, J. W. (1998). The force of mortality at ages 80 to 120 (Volume 5 of odense monographs on population aging series). Odense: Odense University Press.Google Scholar
- Tuljapurkar, S., & Boe, C. (1999). Validation, probability-weighted priors, and information in stoachastic forecasts. International Journal of Forecasting, 15, 259–271.CrossRefGoogle Scholar
- United Nations. (1988). MortPak – The United Nations software package for mortality measurement. Bach-oriented software for the mainframe computer (ST/ESA/SER.R/78). New York: United Nations. Available at http://www.un.org/esa/population//publications/MortPak_SoftwarePkg/MortPak_SoftwarePkg.htm Google Scholar
- United Nations. (2011). World population prospects: The 2010 revision. Population Division, Deptartment of Economic and Social Affairs, United Nations, New York.Google Scholar
- United Nations. (2013a). MortPak for Windows Version 4.3 – The United Nations software package for demographic mortality measurement.Google Scholar
- United Nations. (2013b). National, regional and global estimates and projections of the number of women aged 15 to 49 who are married or in a union, 1970–2030 (Technical paper 2013/2). Population Division, Deptartment of Economic and Social Affairs, United Nations, New York.Google Scholar
- United Nations. (2013c). World population prospects: The 2012 revision – online and DVD edition – data sources and meta information (POP/DB/WPP/Rev.2012/F0-2). Population Division, Deptartment of Economic and Social Affairs, New York.Google Scholar
- United Nations. (2014). World population prospects: The 2012 revision, methodology of the United Nations population estimates and projections. ESA/P/WP.235. Population Division, Deptartment of Economic and Social Affairs, United Nations, New York.Google Scholar
- U. S. Census Bureau (2009). International data base: Population estimates and projections methodology. Available at http://www.census.gov/ipc/www/idb/estandproj.pdf
- Whelpton, P. K. (1928). Population of the United States, 1925–1975. American Journal of Sociology, 31, 253–270.CrossRefGoogle Scholar
- Whelpton, P. K. (1936). An empirical method for calculating future population. Journal of the American Statistical Association, 31, 457–473.CrossRefGoogle Scholar
- Wilmoth, J. R., Andreev, K., Jdanov, D., & Glei, D. A. (2007). Methods protocol for the Human Mortality Database. Online publication of the Human Mortality Database. http://www.mortality.org/Public/Docs/MethodsProtocol.pdf Google Scholar
- Zaba, B., Marston, M., Crampin, A. C., Isingo, R., Biraro, S., Barnighausen, T., Lopman, B., Lutalo, T., Glynn, J. R., & Todd, J. (2007). Age-specific mortality patterns in HIV-infected individuals: A comparative analysis of African community study data. Aids, 21(6), S87–S96.CrossRefGoogle Scholar