Advertisement

Formation Mechanisms of Covalent Nanostructures from Density Functional Theory

  • Jonas BjörkEmail author
Conference paper
Part of the Advances in Atom and Single Molecule Machines book series (AASMM)

Abstract

In this chapter, it is demonstrated how electronic structure calculations, with focus on density functional theory, can be used to gain insight about on-surface reactions. I first give a brief introduction to how density functional theory can be used to study reactions. The focus is then shifted to two different types of on-surface reactions, highlighting the theoretical work that has been performed to gain detailed atomistic insight into them. First, the state of the art of the theory behind on-surface Ullmann coupling is described. In this reaction, molecular building blocks dehalogenate, which enables them to covalently couple. The most crucial reaction parameters are identified—the diffusion and coupling barriers of surface-supported radicals—and the potential for theory to optimize these is discussed. We then concentrate on the homo-coupling between terminal alkynes, a rudimentarily different process where molecules initially couple before undergoing a dehydrogenation step. The theory of the mechanism behind this coupling strategy is less developed than that of the on-surface Ullmann coupling, where fundamental questions remain to be unraveled. For example, by the subtle change of substrate from Ag to Au, the on-surface alkyne chemistry is completely altered from the homo-coupling to a cyclodehydrogenation reaction for the same molecular building block, of which origin remains unknown. The main objective of the chapter is to give an impression of what kind of information theory can obtain about reaction on surface, as well as to motivate and inspire for future theoretical studies, which will be needed to turn on-surface synthesis into a more predictive discipline.

Keywords

Density Functional Theory Reaction Path Reaction Energy Transition State Theory Terminal Alkyne 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Without the close collaboration with experimental partners, much of the presented work would not have been possible. In particular, Dr. Yi-Qi Zhang, Dr. habil. Florian Klappenberger, and Prof. Johannes Barth at Technische Universität München are acknowledged for their groundbreaking experiments on the homo-coupling of terminal alkynes. Furthermore, I am grateful to Prof. Sven Stafström at Linköping University for encouraging me to follow this exciting line of research.

References

  1. 1.
    Bieri, M., Treier, M., Cai, J., Aït-Mansour, K., Ruffieux, P., Gröning, O., Gröning, P., Kastler, M., Rieger, R., Feng, X., Müllen, K., Fasel, R.: Porous graphenes: two-dimensional polymer synthesis with atomic precision. Chem. Commun., 6919–6921 (2009)Google Scholar
  2. 2.
    Bieri, M., Nguyen, M.-T., Gröning, O., Cai, J., Treier, M., Aït-Mansour, K., Ruffieux, P., Pignedoli, C.A., Passerone, D., Kastler, M., Müllen, K., Fasel, R.: Two-dimensional polymer formation on surfaces: insight into the roles of precursor mobility and reactivity. J. Am. Chem. Soc. 132, 16669–16676 (2010)Google Scholar
  3. 3.
    Björk, J., Hanke, F.: Towards design rules for covalent nanostructures on metal surfaces. Chem. Eur. J. 20, 928–934 (2014)CrossRefGoogle Scholar
  4. 4.
    Björk, J., Stafström, S.: Adsorption of large hydrocarbons on coinage metals: a van der Waals density functional study. ChemPhysChem 15, 2851–2858 (2014)CrossRefGoogle Scholar
  5. 5.
    Björk, J., Hanke, F., Stafström, S.: Mechanisms of halogen-based covalent self-assembly on metal surfaces. J. Am. Chem. Soc. 135, 5768–5775 (2013)CrossRefGoogle Scholar
  6. 6.
    Björk, J., Zhang, Y.-Q., Klappenberger, F., Barth, J.V., Stafström, S.: Unraveling the mechanism of the covalent coupling between terminal alkynes on a noble metal. J. Phys. Chem. C 118, 3181–3187 (2014)CrossRefGoogle Scholar
  7. 7.
    Bürker, C., Ferri, N., Tkatchenko, A., Gerlach, A., Niederhausen, J., Hosokai, T., Duhm, S., Zegenhagen, J., Koch, N., Schreiber, F.: Exploring the bonding of large hydrocarbons on noble metals: diindoperylene on Cu(111), Ag (111), and Au (111). Phys. Rev. B 87, 165443–165447 (2013)CrossRefGoogle Scholar
  8. 8.
    Cai, J., Ruffieux, P., Jaafar, R., Bieri, M., Braun, T., Blankenburg, S., Muoth, M., Seitsonen, A.P., Saleh, M., Feng, X., Müllen, K., Fasel, R.: Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010)CrossRefGoogle Scholar
  9. 9.
    Cirera, B., Zhang, Y.-Q., Klyatskaya, S., Ruben, M., Klappenberger, F., Barth, J.V.: 2D self-assembly and catalytic homo-coupling of the terminal alkyne 1,4-Bis(3,5-diethynyl-phenyl)butadiyne-1,3 on Ag(111). ChemCatChem 5, 3281–3288 (2013)CrossRefGoogle Scholar
  10. 10.
    Cirera, B., Zhang, Y.-Q., Björk, J., Klyatskaya, S., Chen, Z., Ruben, M., Barth, J.V., Klappenberger, F.: Synthesis of extended graphdiyne wires by vicinal surface templating. Nano Lett. 14, 1891–1897 (2014)CrossRefGoogle Scholar
  11. 11.
    Di Giovannantonio, M., El Garah, M., Lipton-Duffin, J., Meunier, V., Cardenas, L., Fagot Revurat, Y., Cossaro, A., Verdini, A., Perepichka, D.F., Rosei, F., Contini, G.: Insight into organometallic intermediate and its evolution to covalent bonding in surface-confined Ullmann polymerization. ACS Nano 7, 8190–8198 (2013)CrossRefGoogle Scholar
  12. 12.
    Dion, M., Rydberg, H., Schröder, E., Langreth, D.C., Lundqvist, B.I.: Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401–246404 (2004)CrossRefGoogle Scholar
  13. 13.
    Eichhorn, J., Heckl, W.M., Lackinger, M.: On-surface polymerization of 1,4-diethynylbenzene on Cu(111). Chem. Commun. 49, 2900–2902 (2013)CrossRefGoogle Scholar
  14. 14.
    Eichhorn, J., Strunskus, T., Rastgoo-Lahrood, A., Samanta, D., Schmittele, Lackinger, M.: On-surface Ullmann polymerization via intermediate organometallic networks on Ag(111). Chem. Commun. 50, 7680–7682 (2014)CrossRefGoogle Scholar
  15. 15.
    Gao, H.-Y., Franke, J., Wagner, H., Zhong, D., Held, P.-A., Studer, A., Fuchs, H.: Effect of metal surfaces in on-surface glaser coupling. J. Phys. Chem. C 117, 18595–18602 (2013)CrossRefGoogle Scholar
  16. 16.
    Gao, H.-Y., Wagner, H., Zhong, D., Franke, J.-H., Studer, A., Fuchs, H.: Glaser coupling at metal surfaces. Angew. Chem. Int. Ed. 52, 4024–4028 (2013)CrossRefGoogle Scholar
  17. 17.
    Grill, L., Dyer, M., Lafferentz, L., Persson, M., Peters, M.V., Hecht, S.: Nano-architectures by covalent assembly of molecular building blocks. Nature Nanotechnol. 2, 687–891 (2007)CrossRefGoogle Scholar
  18. 18.
    Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comp. Chem. 27, 1787–1799 (2006)CrossRefGoogle Scholar
  19. 19.
    Gutzler, R., Walch, H., Eder, G., Kloft, S., Hecklab, W.M., Lackinger, M.: Surface mediated synthesis of 2D covalent organic frameworks: 1,3,5-Tris(4-Bromophenyl)benzene on graphite(001), Cu(111), and Ag(110). Chem. Commun. 45, 4456–4458 (2009)CrossRefGoogle Scholar
  20. 20.
    Henkelman, G., Jónsson, H.: A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 111, 7010–7022 (1999)CrossRefGoogle Scholar
  21. 21.
    Henkelman, G., Jónsson, H.: Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000)CrossRefGoogle Scholar
  22. 22.
    Henkelman, G., Uberuaga, B.P., Jónsson, H.: A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000)CrossRefGoogle Scholar
  23. 23.
    Kästner, J., Sherwood, P.: Superlinearly converging dimer method for transition state search. J. Chem. Phys. 128, 014106–014111 (2008)CrossRefGoogle Scholar
  24. 24.
    Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)CrossRefGoogle Scholar
  25. 25.
    Lafferentz, L., Eberhardt, V., Dri, C., Africh, C., Comelli, G., Esch, F., Hecht, S., Grill, L.: Controlling on-surface polymerization by hierarchical and substrate-directed growth. Nature Chem. 4, 215–220 (2012)CrossRefGoogle Scholar
  26. 26.
    Liu, J., Ruffieux, P., Feng, X., Müllen, K., Fasel, R.: Cyclotrimerization of arylalkynes on Au(111). Chem. Commun. 50, 11200–11203 (2014)CrossRefGoogle Scholar
  27. 27.
    Logadottir, A., Rod, T.H., Nørskov, J.K., Hammer, B., Dahl, S., Jacobsen, C.J.H.: The BrønstedEvansPolanyi relation and the volcano plot for ammonia synthesis over transition metal catalysts. J. Catal. 197, 229–231 (2001)CrossRefGoogle Scholar
  28. 28.
    Matena, M., Björk, J., Wahl, M., Lee, T.-L., Zegenhagen, J., Gade, L.H., Jung, T.A., Persson, M., Sthr, M.: On-surface synthesis of a two-dimensional porous coordination network: unraveling adsorbate interactions. Phys. Rev. B 90, 125408–125415 (2014)CrossRefGoogle Scholar
  29. 29.
    Meyer, J., Reuter, K.: Modeling heat dissipation at the nanoscale: an embedding approach for chemical reaction dynamics on metal surfaces. Angew. Chem. Int. Ed. 53, 4721–4724 (2014)CrossRefGoogle Scholar
  30. 30.
    Nguyen, M.-T., Pignedoli, C.A., Passarone, D.: An Ab initio insight into the Cu(111)-mediated Ullmann reaction. Phys. Chem. Chem. Phys. 13, 154–160 (2011)CrossRefGoogle Scholar
  31. 31.
    Ruiz, V., Liu, W., Zojer, E., Scheffler, M., Tkatchenko, A.: Density-functional theory with screened van der Waals interactions for the modeling of hybrid inorganic-organic systems. Phys. Rev. Lett. 108, 146103–146107 (2012)CrossRefGoogle Scholar
  32. 32.
    Thonhauser, T., Cooper, V.R., Li, S., Puzder, A., Hyldgaard, P., Langreth, D.C.: Van der Waals density functional: self-consistent potential and the nature of the van der Waals bond. Phys. Rev. B 76, 125112–125122 (2007)CrossRefGoogle Scholar
  33. 33.
    Zhang, Y.-Q., Kepčija, N., Kleinschrodt, M., Diller, K., Fischer, S., Papageorgiou, A.C., Allegretti, F., Björk, J., Klyatskaya, S., Klappenberger, F., Ruben, M., Barth, J.V.: Homo-coupling of terminal alkynes on a noble metal surface. Nat. Commun. 3, 1286 (2012)Google Scholar
  34. 34.
    Xi, M., Bent, B.E.: Iodobenzene on Cu(111): formation and coupling of adsorbed phenyl groups. Surf. Sci. 278, 19–32 (1992)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Physics, Chemistry and Biology, IFMLinköping UniversityLinköpingSweden

Personalised recommendations