A Quality-of-Data Aware Mobile Decision Support System for Patients with Chronic Illnesses

  • Nekane LarburuEmail author
  • Boris van Schooten
  • Erez Shalom
  • Nick Fung
  • Marten van Sinderen
  • Hermie Hermens
  • Val JonesEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9485)


We present a mobile decision support system (mDSS) which runs on a patient Body Area Network consisting of a smartphone and a set of biosensors. Quality-of-Data (QoD) awareness in decision making is achieved by means of a component known as the Quality-of-Data Broker, which also runs on the smartphone. The QoD-aware mDSS collaborates with a more sophisticated decision support system running on a fixed back-end server in order to provide distributed decision support. This distributed decision support system has been implemented as part of a larger system developed during the European project MobiGuide. The MobiGuide system is a guideline-based Patient Guidance System designed to assist patients in the management of chronic illnesses. The system, including the QOD-aware mDSS, has been validated by clinicians and is being evaluated in patient pilots against two clinical guidelines.


Decision support Computer-interpretable clinical guidelines Knowledge representation for healthcare processes Context-aware healthcare processes Mobile process and task support in healthcare 



The MobiGuide project ( has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 287811.


  1. 1.
    Shalom, E., Shahar, Y., Goldstein, A., Ariel, A., Sheinberger, M., Fung, N., Jones, V., Van chooten, B.: Implementation of a distributed guideline-based decision support model in MobiGuide framework. In: Riaño, D., Lenz, R., Miksch, S., Peleg, M., Reichert, M., ten Teije, A. (eds.) KR4HC/ProHealth 2015. LNCS (LNAI), vol. 9485, pp. 111–125. Springer, Heidelberg (2015) Google Scholar
  2. 2.
    Jones, V.M., Bults, R.G.A., Konstantas, D.M., Vierhout, P.A.M.: Healthcare PANs: Personal Area Networks for trauma care and home care. In: Fourth International Symposium on Wireless Personal Multimedia Communications (WPMC) (2001)Google Scholar
  3. 3.
    Jones, V.M., Huis in’t Veld, R., Tonis, T., Bults, R.B., van Beijnum, B., Widya, I., Vollenbroek-Hutten, M., Hermens, H.: Biosignal and Context Monitoring: Distributed Multimedia Applications of Body Area Networks in Healthcare. In: Proceedings of the 2008 IEEE 10th International Workshop on Multimedia Signal Processing, (MMSP 2008), pp. 820–825 (2008)Google Scholar
  4. 4.
    Hermens, H., Jones, V.: Extending remote patient monitoring with mobile real time clinical decision support. In: Veltink, P., Eberle, W. (eds.) 4th Annual Symposium of the IEEE-EMBS Benelux. University of Twente, The Netherlands (2009)Google Scholar
  5. 5.
    Jones, V., Hermens, H., et al.: Predicting feedback compliance in a teletreatment application. In: 2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL), pp. 1–5. IEEE (2010)Google Scholar
  6. 6.
    Touati, F., Tabish, R.: U-healthcare system: state-of-the-art review and challenges. J. Med. Syst. 37, 9949 (2013)CrossRefGoogle Scholar
  7. 7.
    Hommersom, A., Lucas, P., Velikova, M., Dal, G., Bastos, J., Rodriguez, J., Germs, M., Schwietert, H.: MoSHCA - my mobile and smart health care assistant. In: 2013 IEEE 15th International Conference on e-Health Networking, Applications Services (Healthcom), pp. 188–192 (2013)Google Scholar
  8. 8.
    Circulation, Journal of the American Heart Association. Guidelines for the Management of Patients With Atrial Fibrillation: A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines 123, e269–e367 (2011)Google Scholar
  9. 9.
    Rigla, M., Tirado, R., Caixàs, A., Pons, B., Costa, J.: Gestational Diabetes Guideline CSPT. MobiGuide Project Deliverable (FP7-287811) Version 1.0, 12/02/2013Google Scholar
  10. 10.
    Shahar, Y., Miksch, S., Johnson, P.: The Asgaard project: A task-specific framework for the application and critiquing of time-oriented clinical guidelines. Artif. Intell. Med. 14(1), 29–51 (1998)CrossRefGoogle Scholar
  11. 11.
    Shahar, Y., Young, O., Shalom, E., Galperin, M., Mayaffit, A., Moskovitch, R., Hessing, A.: A framework for a distributed, hybrid, multiple-ontology clinical-guideline library, and automated guideline-support tools. J. Biomed. Inform. 37, 325–344 (2004)CrossRefGoogle Scholar
  12. 12.
    Shalom, E., Shahar, Y., Taieb-Maimon, M., Bar, G., Yarkoni, A., Young, O., Martins, S.B., Vaszar, L., Goldstein, M.K., Liel, Y., Leibowitz, A., Marom, T., Lunenfeld, E.: A quantitative assessment of a methodology for collaborative specification and evaluation of clinical guidelines. J. Biomed. Inform. 41, 889–903 (2008)CrossRefGoogle Scholar
  13. 13.
    Sacchi, L., Fux, A., Napolitano, C., Panzarasa, S., Peleg, M., Quaglini, S., Shalom, E., Soffer, P., Tormene, P.: Patient-tailored workflow patterns from clinical practice guidelines recommendations. In: MEDINFO 2013, pp. 392–396 (2013)Google Scholar
  14. 14.
    Fung, N.L.S., Widya, I., Broens, T., Larburu, N., Bults, R., Shalom, E., Jones, V., Hermens, H.: Application of a conceptual framework for the modelling and execution of clinical guidelines as networks of concurrent processes. Procedia Comput. Sci. 35, 671–680 (2014)CrossRefGoogle Scholar
  15. 15.
    Larburu, N., Bults, R.G., Widya, I., Hermens, H.J.: Quality of data computational models and telemedicine treatment effects. In: 2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom), pp. 364–369 (2014)Google Scholar
  16. 16.
    Dey, A.: Understanding and using context. Pers. Ubiquit. Comput. 5(1), 4–7 (2001)CrossRefGoogle Scholar
  17. 17.
    Goldstein, A., Quaglini, S., Sacchi, L., Panzarasa, S., Napolitano, C., Larburu, N., Bults, R., Rigla, M., García-Sáez, G.: MobiGuide Deliverable D4.1: CIGs KB (2014)Google Scholar
  18. 18.
    Shalom, E., Shahar, Y., Parmet, Y., Lunenfeld, E.: A multiple-scenario assessment of the effect of a continuous-care, guideline-based decision support system on clinicians compliance to clinical guidelines. Int. J. Med. Inform. 84(4), 248–262 (2015)CrossRefGoogle Scholar
  19. 19.
    Berti, L.: Quality and recommendation of multi-source data for assisting technological intelligence applications. In: Bench-Capon, T.J.M., Soda, G., Tjoa, A.M. (eds.) DEXA 1999. LNCS, vol. 1677, pp. 282–291. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  20. 20.
    Berner, E.S.: Clinical decision support systems: state of the art. AHRQ Publication (09-0069), 4–26 (2009)Google Scholar
  21. 21.
    McCormack, J.L., Ash, J.S.: Clinician perspectives on the quality of patient data used for clinical decision support: a qualitative study. In: AMIA Annual Symposium Proceedings, vol. 2012, p. 1302. American Medical Informatics AssociationGoogle Scholar
  22. 22.
    Chengalur-Smith, I.N., Ballou, D.P., Pazer, H.L.: The impact of data quality information on decision making: an exploratory analy-sis. IEEE Trans. Knowl. Data Eng. 11(6), 853–864 (1999)CrossRefGoogle Scholar
  23. 23.
    Wand, Y., Wang, R.Y.: Anchoring data quality dimensions in ontological foundations. Commun. ACM 39(11), 86–95 (1996)CrossRefGoogle Scholar
  24. 24.
    Guyatt, G.H., Oxman, A.D., Kunz, R., Falck-Ytter, Y., Vist, G.E., Liberati, A., Schunemann, H.J., GRADE Working Group: Going from evidence to recommendations. BMJ 336(7652), 1049–1051 (2008)CrossRefGoogle Scholar
  25. 25.
    Widya, I., Stap, R.E., Teunissen, L.J., Hopman, B.F.: On the end-user QoS-awareness of a distributed service environment. In: van Sinderen, M., Nieuwenhuis, L.J.M. (eds.) PROMS 2001. LNCS, vol. 2213, pp. 222–237. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  26. 26.
    Wang, R.Y., Strong, D.M.: Beyond accuracy: what data quality means to data consumers. J. Manage. Inf. Syst. 12(4), 5–33 (1996)zbMATHGoogle Scholar
  27. 27.
    Weber, J.H., Price, M., Davies, I.: Data quality by contract – towards an architectural view for data quality in helath information systems. In: Prohealth (2015)Google Scholar
  28. 28.
    Ballou, D.P., Pazer, H.L.: Cost/quality tradeoffs for control procedures in information systems. Omega 15, 509–521 (1987)CrossRefGoogle Scholar
  29. 29.
    Widya, I., van Beijnum, B. J., Salden, A.: QoC-based optimization of end-to-end M-Health data delivery services. In: 14th IEEE International Workshop on Quality of Service, IWQoS 2006, pp. 252–260 (2006)Google Scholar
  30. 30.
    Larburu, N., Widya, I., Bults, R.G., Hermens, H.J.: Making medical treatments resilient to technological disruptions in telemedicine systems. In: 2014 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), pp. 285–288 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Nekane Larburu
    • 1
    Email author
  • Boris van Schooten
    • 1
    • 2
  • Erez Shalom
    • 3
  • Nick Fung
    • 1
  • Marten van Sinderen
    • 1
  • Hermie Hermens
    • 1
    • 2
  • Val Jones
    • 1
    Email author
  1. 1.University of TwenteEnschedeThe Netherlands
  2. 2.Roessingh Research and DevelopmentEnschedeThe Netherlands
  3. 3.The Medical Informatics Research CenterBen Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations