International Conference on Neural Information Processing

Neural Information Processing pp 675-684 | Cite as

Transport-Independent Protocols for Universal AER Communications

  • Alexander D. Rast
  • Alan B. Stokes
  • Sergio Davies
  • Samantha V. Adams
  • Himanshu Akolkar
  • David R. Lester
  • Chiara Bartolozzi
  • Angelo Cangelosi
  • Steve Furber
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9492)

Abstract

The emergence of Address-Event Representation (AER) as a general communications method across a large variety of neural devices suggests that they might be made interoperable. If there were a standard AER interface, systems could communicate using native AER signalling, allowing the construction of large-scale, real-time, heterogeneous neural systems. We propose a transport-agnostic AER protocol that permits direct bidirectional event communications between systems over Ethernet, and demonstrate practical implementations that connect a neuromimetic chip: SpiNNaker, both to standard host PCs and to real-time robotic systems. The protocol specifies a header and packet format that supports a variety of different possible packet types while coping with questions of data alignment, time sequencing, and packet compression. Such a model creates a flexible solution either for real-time communications between neural devices or for live spike I/O and visualisation in a host PC. With its standard physical layer and flexible protocol, the specification provides a prototype for AER protocol standardisation that is at once compatible with legacy systems and expressive enough for future very-large-scale neural systems.

References

  1. 1.
    Adams, S.V., Rast, A.D., Patterson, C., Galluppi, F., Brohan, K., Pérez-Carrasco, J.-A., Wennekers, T., Furber, S., Cangelosi, A.: Towards real-world neurorobotics: integrated neuromorphic visual attention. In: Loo, C.K., Yap, K.S., Wong, K.W., Beng Jin, A.T., Huang, K. (eds.) ICONIP 2014, Part III. LNCS, vol. 8836, pp. 563–570. Springer, Heidelberg (2014) Google Scholar
  2. 2.
    Davison, A.P., et al.: PyNN: a common interface for neuronal network simulators. In: Frontiers in Neuroinformatics 2.11, January 2009Google Scholar
  3. 3.
    Djurfeldt, M., et al.: Run-time interoperability between neuronal network simulators based on the MUSIC framework. Neuroinformatics 8(1), 43–60 (2010)CrossRefGoogle Scholar
  4. 4.
    Fasnacht, D.B., Whatley, A.M., Indiveri, G.: A serial communication infrastructure for multi-chip address event systems. In: Proceedings of 2008 IEEE International Symposium Circuits and Systems (ISCAS2008), pp. 648–651 (2008)Google Scholar
  5. 5.
    Furber, S.B., et al.: Overview of the SpiNNaker system architecture. IEEE Trans. Comput. 62(12), 2454–2467 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Indiveri, G., Chicca, E., Douglas, R.: A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Trans. Neural Netw. 17(1), 211–221 (2006)CrossRefGoogle Scholar
  7. 7.
    Lazzaro, J., et al.: Silicon auditory processors as computer peripherals. IEEE Trans. Neural Netw. 4(3), 523–528 (1993)CrossRefGoogle Scholar
  8. 8.
    Lichsteiner, P., Posch, C., Delbrück, T.: A 128 \(\times \) 128 120 dB 15 ms latency asynchronous contrast vision sensor. IEEE J. Solid-State Circ. 43(2), 566–576 (2008)CrossRefGoogle Scholar
  9. 9.
    Rast, A.D., et al.: A location-independent direct link neuromorphic interface. In: Proceedings of 2013 International Joint Conference Neural Networks (IJCNN2013), pp. 1967–1974 (2013)Google Scholar
  10. 10.
    Schemmel, J., et al.: A wafer-scale neuromorphic hardware system for large- scale neural modeling. In: Proceedings of 2010 IEEE International Symposium Circuits and Systems (ISCAS2010), pp. 1947–1950 (2010)Google Scholar
  11. 11.
    Serrano-Gotarredona, R., et al.: CAVIAR: A 45k Neuron, 5M Synapse, 12G Connects/s AER hardware sensory-processing-learning-actuating system for high-speed visual object recognition and tracking. IEEE Trans. Neural Netw. 20(9), 1417–1438 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Alexander D. Rast
    • 1
  • Alan B. Stokes
    • 1
  • Sergio Davies
    • 1
  • Samantha V. Adams
    • 2
  • Himanshu Akolkar
    • 3
  • David R. Lester
    • 1
  • Chiara Bartolozzi
    • 3
  • Angelo Cangelosi
    • 2
  • Steve Furber
    • 1
  1. 1.School of Computer ScienceUniversity of ManchesterManchesterUK
  2. 2.Plymouth UniversityPlymouthUK
  3. 3.Istituto Italiano da TechnologiaGenoaItaly

Personalised recommendations