Advertisement

Activity and Flight Trajectory Monitoring of Mosquito Colonies for Automated Behaviour Analysis

  • Burhan KhanEmail author
  • Julie Gaburro
  • Samer Hanoun
  • Jean-Bernard Duchemin
  • Saeid Nahavandi
  • Asim Bhatti
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9492)

Abstract

Monitoring and tracking of mosquitoes using image processing is important to facilitate the mosquitos’ behaviour analysis automatically over longer period of times. In this paper, we propose a simple methodology to monitor mosquitos’ activity using multiple cameras optimally placed. In order to ensure optimal camera coverage for the area of observation and desired image quality; we propose to simulate the experimental setup in a 3D virtual environment to obtain one-off optimum camera placement parameters. Our proposed methodology is demonstrated to have improved the activity monitoring process using two cameras for accurate count of occluded mosquitoes and 3D trajectory path reconstruction. This framework will enable working out more challenging tasks of constructing 3D trajectories using information received from multiple low quality cameras, which provide inconsistent and discontinuous trajectories.

Keywords

3D tracking Behaviour analysis Camera placement Mosquito activity 

References

  1. 1.
    Becker, N., Petrić, D., Boase, C., Lane, J., Zgomba, M., Dahl, C., et al.: Mosquitoes and Their Control, vol. 2. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Ghosh, A., Edwards, M., Jacobs-Lorena, M.: The journey of the malaria parasite in the mosquito: hopes for the new century. Parasitol. Today 16, 196–201 (2000)CrossRefGoogle Scholar
  3. 3.
    Gubler, D.J.: Human arbovirus infections worldwide. Ann. N. Y. Acad. Sci. 951, 13–24 (2001)CrossRefGoogle Scholar
  4. 4.
    Monath, T.P.: The Arboviruses: Epidemiology and Ecology. CRC Press, Boca Raton (1988)Google Scholar
  5. 5.
    Monath, T.P.: Yellow fever: an update. Lancet Infect. Dis 1, 11–20 (2001)CrossRefGoogle Scholar
  6. 6.
    Murrell, S., Wu, S.-C., Butler, M.: Review of dengue virus and the development of a vaccine. Biotechnol. Adv. 29, 239–247 (2011)CrossRefGoogle Scholar
  7. 7.
    Pialoux, G., Gaüzère, B.-A., Jauréguiberry, S., Strobel, M.: Chikungunya, an epidemic arbovirosis. Lancet Infect. Dis. 7, 319–327 (2007)CrossRefGoogle Scholar
  8. 8.
    Petersen, L.R., Brault, A.C., Nasci, R.S.: West Nile virus: review of the literature. JAMA 310, 308–315 (2013)CrossRefGoogle Scholar
  9. 9.
    Dell, A.I., Bender, J.A., Branson, K., Couzin, I.D., de Polavieja, G.G., Noldus, L.P., et al.: Automated image-based tracking and its application in ecology. Trends Ecol. Evol. 29, 417–428 (2014)CrossRefGoogle Scholar
  10. 10.
    Yee, W.L., Foster, W.A.: Diel sugar-feeding and host-seeking rhythms in mosquitoes (Diptera: Culicidae) under laboratory conditions. J. Med. Entomol. 29, 784–791 (1992)CrossRefGoogle Scholar
  11. 11.
    Wilkinson, D.A., Lebon, C., Wood, T., Rosser, G., Gouagna, L.C.: Straightforward multi-object video tracking for quantification of mosquito flight activity. J. Insect Physiol. 71, 114–121 (2014)CrossRefGoogle Scholar
  12. 12.
    Beeuwkes, J., Spitzen, J., Spoor, C., Van Leeuwen, J., Takken, W.: 3-D flight behaviour of the malaria mosquito Anopheles gambiae s.s. inside an odour plume. Proc. Neth. Entomol. Soc. Meet. 19, 137–146 (2008)Google Scholar
  13. 13.
    Spitzen, J., Spoor, C., Kranenbarg, S., Beeuwkes, J., Grieco, F., Noldus, L., et al.: Track3D: visualization and flight track analysis of Anopheles gambiae ss mosquitoes. Proc. Measur. Beh. 2008, 133–135 (2008)Google Scholar
  14. 14.
    Spitzen, J., Spoor, C.W., Grieco, F., ter Braak, C., Beeuwkes, J., van Brugge, S.P., et al.: A 3D analysis of flight behavior of Anopheles gambiae sensu stricto malaria mosquitoes in response to human odor and heat. PLoS One 8, e62995 (2013)CrossRefGoogle Scholar
  15. 15.
    Cooperband, M., Carde, R.: Orientation of culex mosquitoes to carbon dioxide-baited traps: flight manoeuvres and trapping efficiency. Med. Vet. Entomol. 20, 11–26 (2006)CrossRefGoogle Scholar
  16. 16.
    Butail, S., Manoukis, N., Diallo, M., Ribeiro, J.M., Lehmann, T., Paley, D.A.: Reconstructing the flight kinematics of swarming and mating in wild mosquitoes. J. R. Soc. Interface 9, 2624–2638 (2012)CrossRefGoogle Scholar
  17. 17.
    Straw, A.D., Branson, K., Neumann, T.R., Dickinson, M.H.: Multi-camera real-time three-dimensional tracking of multiple flying animals. J. R. Soc. Interface 8, 395–409 (2011)CrossRefGoogle Scholar
  18. 18.
    McMeniman, C.J., Corfas, R.A., Matthews, B.J., Ritchie, S.A., Vosshall, L.B.: Multimodal integration of carbon dioxide and other sensory cues drives mosquito attraction to humans. Cell 156, 1060–1071 (2014)CrossRefGoogle Scholar
  19. 19.
    Hanoun, S., Bhatti, A., Creighton, D., Nahavandi, S., Crothers, P., Esparza, C.G.: Target coverage in camera networks for manufacturing workplaces. J. Intell. Manuf. 26, 1–15 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Burhan Khan
    • 1
    Email author
  • Julie Gaburro
    • 1
    • 2
  • Samer Hanoun
    • 1
  • Jean-Bernard Duchemin
    • 2
  • Saeid Nahavandi
    • 1
  • Asim Bhatti
    • 1
  1. 1.Centre for Intelligent Systems Research (CISR)Deakin UniversityGeelongAustralia
  2. 2.Australian Animal Health Laboratory (AAHL)CSIROGeelongAustralia

Personalised recommendations