Statistical Prior Based Deformable Models for People Detection and Tracking

  • Amira SoudaniEmail author
  • Ezzeddine Zagrouba
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9491)


This paper presents a new approach to segment and track people in video. The basic idea is the use of deformable model with incorporation of statistical prior. We propose an hybrid energy model that incorporates a global and a statistical based energy terms in order to improve the tracking task even under occlusion conditions. Target models are initialized at the first frame, then predictions are constructed based on motion vectors. Therefore, we apply an hybrid active contour model in order to segment tracked people. Experiments show the ability of the proposed algorithm to detect, segment and track people well.


Tracking Segmentation Deformable models Multiple targets Active contours Occlusion 


  1. 1.
    Yilmaz, A., Li, X., Shah, M.: Contour based object tracking with occlusion handling in video acquired using mobile cameras. IEEE Trans. Pattern Anal. Mach. Intell. 26, 1531–1536 (2004)CrossRefGoogle Scholar
  2. 2.
    Shao, J., Dong, N., Tong, M.: Multi-part sparse representation in random crowded scenes tracking. Pattern Recogn. Lett. 34(7), 780–788 (2013)CrossRefGoogle Scholar
  3. 3.
    Yang, Y., Ramanan, D.: Articulated human detection with flexible mixtures of parts. IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2878–2890 (2013)CrossRefGoogle Scholar
  4. 4.
    Xu, Y., Ye, M., Tian, Z., Zhang, X.: Locally adaptive combining colour and depth for human body contour tracking using level set method. IET Comput. Vision 8(4), 316–328 (2014)CrossRefGoogle Scholar
  5. 5.
    Soudani, A., Zagrouba, E.: People tracking based on predictions and graph-cuts segmentation. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Li, B., Porikli, F., Zordan, V., Klosowski, J., Coquillart, S., Luo, X., Chen, M., Gotz, D. (eds.) ISVC 2013, Part II. LNCS, vol. 8034, pp. 158–167. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  6. 6.
    Chan, T.F., Vese, L.A.: Active contours without edges. Trans. Img. Proc. 10(2), 266–277 (2001)CrossRefzbMATHGoogle Scholar
  7. 7.
    Brox, T., Weickert, J.: Level set segmentation with multiple regions. IEEE Trans. Image Process. 15(10), 3213–3218 (2006)CrossRefGoogle Scholar
  8. 8.
    Kasturi, R., et al.: Framework for performance evaluation of face, text, and vehicle detection and tracking in video: data, metrics, and protocol. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 319–336 (2009)CrossRefGoogle Scholar
  9. 9.
    Berclaz, J., Fleuret, F., Fua, P.: Multiple object tracking using flow linear programming. In: The 12th IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, pp. 1–8 (2009)Google Scholar
  10. 10.
    Andriyenko, A., Schindler, K., Roth, S.: Discrete-continuous optimization for multi-target tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1926–1933 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Equipe de Recherche SIIVA, Laboratoire RIADIInstitut Supérieur d’Informatique, Université de Tunis El ManarArianaTunisia

Personalised recommendations