Advertisement

Analysis of Mixed-Rule Cellular Automata Based on Simple Feature Quantities

  • Naoki Tada
  • Toshimichi SaitoEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9490)

Abstract

This paper studies cellular automata with mixed rules (MCA) that can generate various spatiotemporal patterns. The dynamics is integrated into the digital return map on a set of lattice points. In order to analyze the dynamics, we present two simple feature quantities of steady state and transient phenomena. In elementary numerical experiments, plentifulness of the dynamics is confirmed.

Keywords

Cellular automata Digital return maps Feature quantities 

References

  1. 1.
    Chua, L.O.: A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science, I, II. World Scientific, Singapore (2005)zbMATHGoogle Scholar
  2. 2.
    Wada, W., Kuroiwa, J., Nara, S.: Completely reproducible description of digital sound data with cellular automata. Phys. Lett. A 306, 110–115 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Seredynski, M., Bouvry, P.: Block cipher based on reversible cellular automata. In: Proceedings of IEEE/CEC, pp. 2138–2143 (2004)Google Scholar
  4. 4.
    Rosin, P.L.: Training cellular automata for image processing. IEEE Trans. Image Process. 15(7), 2076–2087 (2006)CrossRefGoogle Scholar
  5. 5.
    Lohn, J.D., Reggia, J.A.: Automatic discovery of self-replicating structures in cellular automata. IEEE Trans. Evol. Comput. 1(3), 165–178 (1997)CrossRefGoogle Scholar
  6. 6.
    Yamaoka, H., Horimoto, N., Saito, T.: Basic feature quantities of digital spike maps. In: Wermter, S., Weber, C., Duch, W., Honkela, T., Koprinkova-Hristova, P., Magg, S., Palm, G., Villa, A.E.P. (eds.) ICANN 2014. LNCS, vol. 8681, pp. 73–80. Springer, Heidelberg (2014) Google Scholar
  7. 7.
    Moriyasu, J., Saito, T.: A deep dynamic binary neural network and its application to matrix converters. In: Wermter, S., Weber, C., Duch, W., Honkela, T., Koprinkova-Hristova, P., Magg, S., Palm, G., Villa, A.E.P. (eds.) ICANN 2014. LNCS, vol. 8681, pp. 611–618. Springer, Heidelberg (2014) Google Scholar
  8. 8.
    Yamaoka, H., Saito, T.: Analysis of digital spike maps based on simple feature quantities. In: Proceedings of NOLTA (2015, to appear)Google Scholar
  9. 9.
    Sawayama, R., Saito, T.: Evolutionary learning and stability of mixed-rule cellular automata. In: Loo, C.K., Yap, K.S., Wong, K.W., Teoh, A., Huang, K. (eds.) ICONIP 2014, Part II. LNCS, vol. 8835, pp. 271–278. Springer, Heidelberg (2014) Google Scholar
  10. 10.
    Amari, S.: A method of statistical neurodynamics. Kybernetik 14, 201–215 (1974)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Hosei UniversityKoganeiJapan

Personalised recommendations