Webcam-Based Visual Gaze Estimation Under Desktop Environment

  • Shujian Yu
  • Weihua Ou
  • Xinge You
  • Xiubao Jiang
  • Yun Zhu
  • Yi Mou
  • Weigang Guo
  • Yuanyan Tang
  • C. L. Philip Chen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9490)


Image-based visual gaze estimation has been widely used in various scientific and application-oriented disciplines. However, the high cost and tedious calibration procedure impede its generalization in real scenarios. In this paper, we develop a low cost yet effective webcam based visual gaze estimation system. Different from previous works, we aim at minimizing the system cost, and at the same time, making the system more flexible and feasible to users. More specifically, only a single ordinary webcam is used in our system. Meanwhile, we also proposed a novel calibration mechanism which takes account binocular feature vectors simultaneously, and uses only four visual target points. We compare our system with the state of the art webcam based visual gaze estimation methods. Experimental results demonstrate that our system can achieve satisfactory performance without the requirements of dedicated hardware or tedious calibration procedure.


Visual gaze estimation Ordinary webcam Desktop environment Low cost Flexible Binocular calibration 



This work is supported partially by the National Natural Science Foundation of China (no.61402122) and the 2014 Ph.D. Recruitment Program of Guizhou Normal University.


  1. 1.
    Bai, L., Shen, L., Wang, Y.: A novel eye location algorithm based on radial symmetry transform. In: International Conference on Pattern Recognition, vol. 3, pp. 511–514. IEEE (2006)Google Scholar
  2. 2.
    Bengoechea, J.J., Cerrolaza, J.J., Villanueva, A., Cabeza, R.: Evaluation of accurate eye corner detection methods for gaze estimation. In: International Workshop, Pervasive Eye Tracking Mobile Eye-Based Interaction (2013)Google Scholar
  3. 3.
    Cheung, Y.M., Peng, Q.: Eye gaze tracking with a web camera in a desktop environment. IEEE Trans. Hum. Mach. Syst. 45(4), 419–430 (2015)CrossRefGoogle Scholar
  4. 4.
    Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 681–685 (2001)CrossRefGoogle Scholar
  5. 5.
    Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models-their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)CrossRefGoogle Scholar
  6. 6.
    Daugman, J.: How iris recognition works. IEEE Trans. Circ. Syst. Video Technol. 14(1), 21–30 (2004)CrossRefGoogle Scholar
  7. 7.
    Djamasbi, S., Siegel, M., Tullis, T.: Visual hierarchy and viewing behavior: an eye tracking study. In: Jacko, J.A. (ed.) Human-Computer Interaction, Part I, HCII 2011. LNCS, vol. 6761, pp. 331–340. Springer, Heidelberg (2011) Google Scholar
  8. 8.
    Duchowski, A.: Eye Tracking Methodology: Theory and Practice, vol. 373. Springer Science & Business Media, London (2007) zbMATHGoogle Scholar
  9. 9.
    Guestrin, E.D., Eizenman, E.: General theory of remote gaze estimation using the pupil center and corneal reflections. IEEE Trans. Biomed. Eng. 53(6), 1124–1133 (2006)CrossRefGoogle Scholar
  10. 10.
    Hansen, D.W., Ji, Q.: In the eye of the beholder: a survey of models for eyes and gaze. IEEE Trans. Pattern Anal. Mach. Intell. 32(3), 478–500 (2010)CrossRefGoogle Scholar
  11. 11.
    Hansen, D.W., Pece, A.E.: Eye tracking in the wild. Comput. Vis. Image Underst. 98(1), 155–181 (2005)CrossRefGoogle Scholar
  12. 12.
    Ince, I.F., Kim, J.W.: A 2d eye gaze estimation system with low-resolution webcam images. EURASIP J. Adv. Sig. Process. 2011(1), 1–11 (2011)CrossRefGoogle Scholar
  13. 13.
    Lee, J.W., Heo, H., Park, K.R.: A novel gaze tracking method based on the generation of virtual calibration points. Sensors 13(8), 10802–10822 (2013)CrossRefGoogle Scholar
  14. 14.
    Loy, G., Zelinsky, A.: A fast radial symmetry transform for detecting points of interest. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part I. LNCS, vol. 2350, pp. 358–368. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  15. 15.
    Lv, Z., Feng, L., Li, H., Feng, S.: Hand-free motion interaction on google glass. In: SIGGRAPH Asia 2014 Mobile Graphics and Interactive Applications (2014)Google Scholar
  16. 16.
    Lv, Z., Halawani, A., Feng, S., Rhman, S.U., Li, H.: Touch-less interactive augmented reality game on vision based wearable device. Pers. Ubiquit. Comput. 19(3–4), 551–567 (2015)CrossRefGoogle Scholar
  17. 17.
    Majaranta, P.: Gaze Interaction and Applications of Eye Tracking: Advances in Assistive Technologies. IGI Global, Hershey (2011)Google Scholar
  18. 18.
    Alabort-i-Medina, J., Qu, B., Zafeiriou, S.: Statistically learned deformable eye models. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014 Workshops. LNCS, vol. 8925, pp. 285–295. Springer, Heidelberg (2015) Google Scholar
  19. 19.
    Morimoto, C.H., Koons, D., Amir, A., Flickner, M.: Pupil detection and tracking using multiple light sources. Image Vis. Comput. 18(4), 331–335 (2000)CrossRefGoogle Scholar
  20. 20.
    Pfeuffer, K., Vidal, M., Turner, J., Bulling, A., Gellersen, H.: Pursuit calibration: making gaze calibration less tedious and more flexible. In: Proceedings of the 26th annual ACM symposium on User interface software and technology, pp. 261–270. ACM (2013)Google Scholar
  21. 21.
    Proenca, H.: Iris recognition: on the segmentation of degraded images acquired in the visible wavelength. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1502–1516 (2010)CrossRefGoogle Scholar
  22. 22.
    Sesma-Sanchez, L., Villanueva, A., Cabeza, R.: Design issues of remote eye tracking systems with large range of movement. In: Proceedings of the Symposium on Eye Tracking Research and Applications, pp. 243–246. ACM (2014)Google Scholar
  23. 23.
    Tan, T., He, Z., Sun, Z.: Efficient and robust segmentation of noisy iris images for non-cooperative iris recognition. Image Vis. Comput. 28(2), 223–230 (2010)CrossRefGoogle Scholar
  24. 24.
    Valenti, R., Gevers, T.: Accurate eye center location and tracking using isophote curvature. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)Google Scholar
  25. 25.
    Valenti, R., Sebe, N., Gevers, T.: Combining head pose and eye location information for gaze estimation. IEEE Trans. Image Process. 21(2), 802–815 (2012)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Valenti, R., Staiano, J., Sebe, N., Gevers, T.: Webcam-based visual gaze estimation. In: Foggia, P., Sansone, C., Vento, M. (eds.) ICIAP 2009. LNCS, vol. 5716, pp. 662–671. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  27. 27.
    Xiong, X., De la Torre, F.: Supervised descent method and its applications to face alignment. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 532–539. IEEE (2013)Google Scholar
  28. 28.
    Zheng, Z., Yang, J., Yang, L.: A robust method for eye features extraction on color image. Pattern Recogn. Lett. 26(14), 2252–2261 (2005)CrossRefGoogle Scholar
  29. 29.
    Zhu, J., Yang, J.: Subpixel eye gaze tracking. In: Fifth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 124–129. IEEE (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Shujian Yu
    • 1
  • Weihua Ou
    • 2
  • Xinge You
    • 3
    • 4
  • Xiubao Jiang
    • 3
  • Yun Zhu
    • 1
  • Yi Mou
    • 3
  • Weigang Guo
    • 3
  • Yuanyan Tang
    • 3
    • 5
  • C. L. Philip Chen
    • 5
  1. 1.Department of Electrical and Computer EngineeringUniversity of FloridaGainesvilleUSA
  2. 2.School of Mathematics and Computer ScienceGuizhou Normal UniversityGuizhouChina
  3. 3.School of Electronic Information and CommunicationsHuazhong University of Science and TechnologyHubeiChina
  4. 4.Research Institute of Huazhong University of Science and Technology in ShenzhenGuangdongChina
  5. 5.Faculty of Science and TechnologyUniversity of MacauMacauChina

Personalised recommendations