Advertisement

Parallelization of the Two-Dimensional Wigner Monte Carlo Method

  • Josef WeinbubEmail author
  • Paul Ellinghaus
  • Siegfried Selberherr
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9374)

Abstract

A parallelization approach for two-dimensional Wigner Monte Carlo quantum simulations using the signed particle method is introduced. The approach is based on a domain decomposition technique, effectually reducing the memory requirements of each parallel computational unit. We depict design and implementation specifics for a message passing interface-based implementation, used in the Wigner Ensemble Monte Carlo simulator, part of the free open source ViennaWD simulation package. Benchmark and simulation results are presented for a time-dependent, two-dimensional problem using five randomly placed point charges. Although additional communication is required, our method offers excellent parallel efficiency for large-scale high-performance computing platforms. Our approach significantly increases the feasibility of computationally highly intricate two-dimensional Wigner Monte Carlo investigations of quantum electron transport in nanostructures.

Keywords

Message Passing Interface Simulation Domain Memory Demand Parallel Efficiency Parallelization Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The computational results presented have been achieved using the Vienna Scientific Cluster (VSC). The authors thank Mihail Nedjalkov for valuable feedback.

References

  1. 1.
    Dimov, I.: Monte Carlo Methods For Applied Scientists. World Scientific Publishing, Singapore (2008). ISBN 9789810223298zbMATHGoogle Scholar
  2. 2.
    Ellinghaus, P., Weinbub, J., Nedjalkov, M., Selberherr, S., Dimov, I.: Distributed-Memory parallelization of the Wigner Monte Carlo method using spatial domain decomposition. J. Comput. Electron. 14(1), 151–162 (2015). doi: 10.1007/s10825-014-0635-3 CrossRefGoogle Scholar
  3. 3.
    Hager, G., Wellein, G.: Introduction to High Performance Computing for Scientists and Engineers. CRC Press, Boca Raton (2010). ISBN 9781439811924CrossRefGoogle Scholar
  4. 4.
    Nedjalkov, M., Kosina, H., Selberherr, S., Ringhofer, C., Ferry, D.K.: Unified particle approach to Wigner-Boltzmann transport in small semiconductor devices. Phys. Rev. B 70, 115319-1–115319-16 (2004). doi: 10.1103/PhysRevB.70.115319 CrossRefGoogle Scholar
  5. 5.
    Nedjalkov, M., Schwaha, P., Selberherr, S., Sellier, J.M., Vasileska, D.: Wigner quasi-particle attributes - an asymptotic perspective. Appl. Phys. Lett. 102(16), 163113-1–163113-4 (2013). doi: 10.1063/1.4802931 CrossRefGoogle Scholar
  6. 6.
    Querlioz, D., Dollfus, P.: The Wigner Monte-Carlo Method for Nanoelectronic Devices: Particle Description of Quantum Transport and Decoherence. Wiley, New York (2010). ISBN 9781848211506Google Scholar
  7. 7.
    Sellier, J.M., Nedjalkov, M., Dimov, I., Selberherr, S.: The role of annihilation in a Wigner Monte Carlo approach. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2013. LNCS, vol. 8353, pp. 186–193. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-43880-0_20 Google Scholar
  8. 8.
    Sellier, J., Nedjalkov, M., Dimov, I., Selberherr, S.: Two-dimensional transient Wigner particle model. In: Proceedings of the 18th International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). pp. 404–407 (2013). doi: 10.1109/SISPAD.2013.6650660
  9. 9.
    Vienna Scientific Cluster: VSC-2. http://vsc.ac.at/
  10. 10.
    ViennaWD: Wigner Ensemble Monte Carlo Simulator. http://viennawd.sourceforge.net/
  11. 11.
    Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. Lett. 40, 749–759 (1932). doi: 10.1103/PhysRev.40.749 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Josef Weinbub
    • 1
    Email author
  • Paul Ellinghaus
    • 1
  • Siegfried Selberherr
    • 1
  1. 1.Institute for MicroelectronicsTU WienViennaAustria

Personalised recommendations