The Influence of Electrostatic Lenses on Wave Packet Dynamics

  • Paul EllinghausEmail author
  • Mihail Nedjalkov
  • Siegfried Selberherr
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9374)


The control of coherent electrons is becoming relevant in emerging devices as (semi-)ballistic transport is observed within nanometer semiconductor structures at room temperature. The evolution of a wave packet – representing an electron in a semiconductor – can be manipulated using specially shaped potential profiles with convex or concave features, similar to refractive lenses used in optics. Such electrostatic lenses offer the possibility, for instance, to concentrate a single wave packet which has been invoked by a laser pulse, or split it up into several wave packets. Moreover, the shape of the potential profile can be dynamically changed by an externally applied potential, depending on the desired behaviour. The evolution of a wave packet under the influence of a two-dimensional potential – the electrostatic lens – is investigated by computing the physical densities using the Wigner function. The latter is obtained by using the signed-particle Wigner Monte Carlo method.


Wave Packet Wigner Function Electron Wave Packet Electrostatic Lens Lens Shape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partially supported by the Bulgarian NSF under the grant DFNI 02/20.


  1. 1.
    Spector, J., Stormer, H.L., Baldwin, K.W., Pfeiffer, L.N., West, K.W.: Electron focusing in two-dimensional systems by means of an electrostatic lens. Appl. Phys. Lett. 56(13), 1290–1292 (1990)CrossRefGoogle Scholar
  2. 2.
    Sivan, U., Heiblum, M., Umbach, C.P., Shtrikman, H.: Electrostatic electron lens in the ballistic regime. Phys. Rev. B 41, 7937–7940 (1990)CrossRefGoogle Scholar
  3. 3.
    Wang, R., Liu, H., Huang, R., Zhuge, J., Zhang, L., Kim, D.W., Zhang, X., Park, D., Wang, Y.: Experimental investigations on carrier transport in Si nanowire transistors: ballistic efficiency and apparent mobility. IEEE Trans. Electron Devices 55(11), 2960–2967 (2008)CrossRefGoogle Scholar
  4. 4.
    Williams, J.R., Low, T., Lundstrom, M.S., Marcus, C.M.: Gate-controlled guiding of electrons in graphene. Nat. Nanotechnol. 6(4), 222–225 (2011)CrossRefGoogle Scholar
  5. 5.
    Muraguchi, M., Endoh, T.: Size dependence of electrostatic lens effect in vertical MOSFETs. Jpn. J. Appl. Phys. 53(4S), 04EJ09 (2014)Google Scholar
  6. 6.
    LeRoy, B.J.: Imaging coherent electron flow. J. Phys. Condens. Matter 15(50), R1835 (2003)CrossRefGoogle Scholar
  7. 7.
    Sellier, H., Hackens, B., Pala, M.G., Martins, F., Baltazar, S., Wallart, X., Desplanque, L., Bayot, V., Huant, S.: On the imaging of electron transport in semiconductor quantum structures by scanning-gate microscopy: successes and limitations. Semicond. Sci. Technol. 26(6), 064008 (2011)CrossRefGoogle Scholar
  8. 8.
    Loth, S., Burgess, J.A.J., Yan, S.: Scanning probe microscopy: close-up on spin coherence. Nat. Nanotechnol. 9(8), 574–575 (2014)CrossRefGoogle Scholar
  9. 9.
    Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932)CrossRefGoogle Scholar
  10. 10.
    Leibfried, D., Pfau, T., Monroe, C.: Shadows and mirrors: reconstructing quantum states of atom motion. Phys. Today 51(4), 22–28 (1998). Print editionCrossRefGoogle Scholar
  11. 11.
    Ellinghaus, P., Nedjalkov, M., Selberherr, S.: Implications of the coherence length on the discrete Wigner potential. In: 2014 International Workshop on Computational Electronics (IWCE), pp. 1–3 (2014)Google Scholar
  12. 12.
    Nedjalkov, M., Vasileska, D.: Semi-discrete 2D Wigner-particle approach. J. Comput. Electron. 7(3), 222–225 (2008)CrossRefGoogle Scholar
  13. 13.
    Nedjalkov, M., Schwaha, P., Selberherr, S., Sellier, J.M., Vasileska, D.: Wigner quasi-particle attributes - an asymptotic perspective. Appl. Phys. Lett. 102(16), 163113 (2013)CrossRefGoogle Scholar
  14. 14.
    Sellier, J.M., Nedjalkov, M., Dimov, I., Selberherr, S.: The role of annihilation in a Wigner Monte Carlo approach. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2013. LNCS, vol. 8353, pp. 186–194. Springer, Heidelberg (2014) Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Paul Ellinghaus
    • 1
    Email author
  • Mihail Nedjalkov
    • 1
  • Siegfried Selberherr
    • 1
  1. 1.Institute for MicroelectronicsTU WienViennaAustria

Personalised recommendations