Public Announcements and Inconsistencies: For a Paraconsistent Topological Model

Chapter
Part of the Logic, Epistemology, and the Unity of Science book series (LEUS, volume 38)

Abstract

In this paper, we discuss public announcement logic in topological context. Then, as an interesting application, we consider public announcement logic in a paraconsistent topological model.

Keywords

Public announcement logic Topological semantics Homotopy Paraconsistent logic 

References

  1. Balbiani, P., Baltag, A., van Ditmarsch, H., Herzig, A., de Lima, T.: ‘Knowable’ as ‘known after an announcement’. Rev. Symbol. Log. 1(3), 305–334 (2008)CrossRefGoogle Scholar
  2. Başkent, C.: Public announcement logic in geometric frameworks. Fundam. Inf. 118(3), 207–223 (2012)Google Scholar
  3. Başkent, C.: Some topological properties of paraconsistent models. Synthese 190(18), 4023–4040 (2013)CrossRefGoogle Scholar
  4. Başkent, C., Olde Loohuis, L., Parikh, R.: On knowledge and obligation. Episteme 9(2), 171–188 (2012)CrossRefGoogle Scholar
  5. Carnielli, W.A., Coniglio, M.E., Marcos, J.: Logics of formal inconsistency. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 14, pp. 15–107. Springer, Dordrecht/London (2007)Google Scholar
  6. da Costa, N.C.A., Krause, D., Bueno, O.: Paraconsistent logics and paraconsistency. In: Jacquette, D. (ed.) Philosophy of Logic, vol. 5, pp. 655–781. Elsevier, Amsterdam (2007)Google Scholar
  7. Gerbrandy, J.: Bisimulations on Planet Kripke. PhD thesis, Institute of Logic, Language and Computation, Universiteit van Amsterdam (1999)Google Scholar
  8. Goodman, N.D.: The logic of contradiction. Z. für Math. Log. und Grundl. der Math. 27(8–10), 119–126 (1981)CrossRefGoogle Scholar
  9. Kelly, T.: Disagreement, dogmatism and belief polarization. J. Philos. 105(10), 611–633 (2008)CrossRefGoogle Scholar
  10. Kooi, B.: Expressivity and completeness for public update logics via reduction axioms. J. Appl. Non-class. Log. 17(2), 231–253 (2007)CrossRefGoogle Scholar
  11. McKinsey, J.C.C., Tarski, A.: The algebra of topology. Ann. Math. 45(1), 141–191 (1944)CrossRefGoogle Scholar
  12. McKinsey, J.C.C., Tarski, A.: On closed elements in closure algebras. Ann. Math. 47(1), 122–162 (1946)CrossRefGoogle Scholar
  13. Mints, G.: A Short Introduction to Intuitionistic Logic. Kluwer, New York (2000)Google Scholar
  14. Mortensen, C.: Topological seperation principles and logical theories. Synthese 125(1–2), 169–178 (2000)CrossRefGoogle Scholar
  15. Plaza, J.A.: Logic of public communication. In: Emrich, M.L., Pfeifer, M.S., Hadzikadic, M., Ras, Z.W. (eds.) 4th International Symposium on Methodologies for Intelligent Systems, Charlotte, pp. 201–216 (1989)Google Scholar
  16. Priest, G.: The logic of paradox. J. Philos. Log. 8, 219–241 (1979)CrossRefGoogle Scholar
  17. Priest, G.: Paraconsistent belief revision. Theoria 67(3), 214–228 (2001)CrossRefGoogle Scholar
  18. Priest, G.: Paraconsistent logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 6, pp. 287–393. Kluwer, Dordrecht (2002)CrossRefGoogle Scholar
  19. Priest, G.: In Contradiction, 2nd edn. Oxford University Press, Oxford/New York (2006)CrossRefGoogle Scholar
  20. Priest, G.: An Introduction to Non-classical Logic. Cambridge University Press, Cambridge/New York (2008)CrossRefGoogle Scholar
  21. van Benthem, J., Bezhanishvili, G.: Modal logics of space. In: Aiello, M., Pratt-Hartman, I.E., van Benthem, J. (eds.) Handbook of Spatial Logics. Springer, Dordrecht (2007)Google Scholar
  22. van Benthem, J., Sarenac, D.: The geometry of knowledge. In: Beziau, J.-Y., Facchini, A. (eds.) Aspects of Universal Logic. Volume 17 of Travaux Logic, pp. 1–31. Centre de recherches sémiologiques, Université de Neuchâtel, Neuchâtel (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of BathBathEngland

Personalised recommendations