Predictive Probabilistic Functions for Energy Prices as an Input in Monte Carlo Simulations

  • Adrien J. P. Grid
  • Andrés Ortuño
  • M. Socorro García-Cascales
  • Juan Miguel Sánchez-Lozano
Chapter

Abstract

The continuous increase in energy costs and the volatility of energy prices are enforcing the implementation of energy efficiency measures (EEM) in companies. The choice of EEM in most cases is based on Pay-Back (PB) criteria, and in several cases on NPV and IRR criteria. In all these cases, it is necessary to estimate the price of energy in the following years so as to be able to study the profitability of the proposed EEM. Energy prices: electricity, biomass, petroleum, natural gas… change greatly throughout the period of a project, and their values are not easy to predict. If probabilistic functions are used to define the evolution of energy prices, in the period of the project, the economic parameters (PB, IRR, NPV) could also be obtained as probabilistic functions, by applying Monte Carlo Simulation Methods. This paper shows how to obtain the probabilistic functions that best describe the variation of energy prices in the period of a project, and how to apply the Monte Carlo Simulation Method to obtain a better approach to predicting future energy prices.

Keywords

Risk management Energy services Monte carlo Energy management Project management 

References

  1. Álvarez-Humberto RAPD (2011) Introducción a la simulación. Retrieved fromhttp://humberto-r-alvarez-a.webs.com/Varios/Documento%20completo.pdf
  2. Andrew F (2006) Seila. Spreadsheet simulation. In: Perrone LF, Wieland FP, Liu J, Lawson BG, Nicol DM, Fujimoto RM (eds) Proceedings of the 2006 winter simulation conference, IEEE, New York, pp 11–18Google Scholar
  3. Asociación española de Operadores de productos Petrolíferos (2013)Google Scholar
  4. Baca Urbina G (2001) Evaluación de, proyectos edn. McGraw Hill, MéxicoGoogle Scholar
  5. Corporación de reservas estratégicas de productos petrolíferos (2013). www.cores.es
  6. Eckstein J, Riedmueller ST (2002) Yasai: yet another add-in for teaching elementary Monte Carlo simulation in excel. INFORMS Trans Educ 2(2)Google Scholar
  7. Europe’s Energy Portal (2013). www.energy.eu
  8. Evans JR (2000) Spreadsheets as a tool for teaching simulation. Inf Trans Edu 1(1):27–37Google Scholar
  9. Faulín J, Juan AA (2005) Simulación de Monte Carlo con excel. Retrieved from http://www.uoc.edu/in3/emath/docs/Simulacion_MC.pdf
  10. Gedam SG, Beaudet ST (2000) Monte Carlo simulation using excel (r) spreadsheet for predicting reliability of a complex system. In: Proceedings of annual reliability and maintainability symposium, 2000, IEEE, New York, pp 188–193Google Scholar
  11. International Energy Agency (2013). www.iea.org
  12. Oficina Estadística de las Comunidades Europeas (2013) http://epp.eurostat.ec.europa.eu/portal/page/portal/statistics/search_database
  13. Platts (2013). www.platts.com
  14. Ramos A (2010) Simulación. Departamento de Organización Industrial, Universidad Pontificia Comillas. Retrieved from http://www.iit.upcomillas.es/aramos/presentaciones/t_mms_M.pdf
  15. Rodríguez-Aragón LJ (2011) Simulación, método de Monte Carlo. Área de Estadística e Investigación Operativa. Universidad de Castilla-La Mancha. Retrieved from http://www.uclm.es/profesorado/licesio/Docencia/mcoi
  16. Sapag-Chain N, Sapag-Chain R (2000) Preparación y evaluación de, proyectos edn. McGraw Hill, MadridGoogle Scholar
  17. Shannon RE, Bernal FA (1988) Simulación de sistemas: Diseño. Desarrollo de implantación. Mexico, TrillasGoogle Scholar
  18. Shapiro JF (2001) Modeling the supply chain. Wadsworth Group, Pacific Grove, CAGoogle Scholar
  19. Tarifa E (2001) Teoría de modelos y simulación. Facultad de Ingeniería, Universidad de Jujuy. Retrieved from http://www.econ.unicen.edu.ar/attachments/1051_TecnicasIISimulacion.pdf

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Adrien J. P. Grid
    • 1
  • Andrés Ortuño
    • 1
  • M. Socorro García-Cascales
    • 1
  • Juan Miguel Sánchez-Lozano
    • 2
  1. 1.Dpto. de Electrónica, Tecnología de Computadoras y ProyectosUniversidad Politécnica de CartagenaCartagenaSpain
  2. 2.Centro Universitario de la Defensa de San Javier (University Centre of Defence at the Spanish Air Force Academy)MDE-UPCTMurciaSpain

Personalised recommendations