Biosynthesis and Stability of Anthocyanins

  • Muhammad Riaz
  • Muhammad Zia-Ul-Haq
  • Bashar Saad
Part of the SpringerBriefs in Food, Health, and Nutrition book series (BRIEFSFOOD)


Anthocyanin profiles of plants are influenced by expression of genes involved in bio-synthetic pathway and are characteristic of specific plant species and families. Although, structure, content and function of various anthocyanins differ significantly, all of them share the same biosynthetic pathway in plants from same precursor. They are products of secondary metabolism (phenyl-pronanoid). Being secondary metabolic products, their synthesis is induced under specific environmental conditions; UV-radiation, biotic/abiotic stress, nutrients deficits and for defense purposes. With advanced molecular biology techniques, encoding enzymes used in biosynthesis and genes responsible for regulating the production and accumulation of anthocyanins have been identified. This chapter describes details of biosynthetic pathway of anthocyanins as well as stability of anthocyanin. Various factors affecting stability of anthocyanins have also been described.


Anthocyanins Biosynthic pathway Stability Degradation 


  1. 1.
    De Pascual-Teresa, S., & Sanchez-Ballesta, M. T. (2008). Anthocyanins: From plant to health. Phytochemistry Reviews, 7(2), 281–299.CrossRefGoogle Scholar
  2. 2.
    Teixeira da Silva, J. A., Serena, A., Wei, L., Hao, Y., & Akira, K. (2014). Genetic control of flower development, color and senescence of Dendrobium orchids. Scientia Horticulturae, 175, 74–86.CrossRefGoogle Scholar
  3. 3.
    Oancea, S., & Oprean, L. (2011). Anthocyanin extracts in the perspective of health benefits and food applications. Revista de Economia, 218.Google Scholar
  4. 4.
    Kassim, A., Poette, J., Paterson, A., Zait, D., McCallum, S., Woodhead, M., et al. (2009). Environmental and seasonal influences on red raspberry anthocyanin antioxidant contents and identification of quantitative traits loci (QTL). Molecular Nutrition and Food Research, 53(5), 625–634.CrossRefGoogle Scholar
  5. 5.
    Giusti, M. M., & Wrolstad, R. E. (2003). Acylated anthocyanins from edible sources and their applications in food systems. Biochemical Engineering Journal, 14(3), 217–225.CrossRefGoogle Scholar
  6. 6.
    Rein, M. (2005). Copigmentation reactions and color stability of berry anthocyanins. Helsinki: University of Helsinki.Google Scholar
  7. 7.
    Castañeda-Ovando, A., Lourdes Pacheco-Hernández, M. D. L., Páez-Hernández, M. E., José, A. R., & Galán-Vidal, C. A. (2009). Chemical studies of anthocyanins: A review. Food Chemistry, 113(4), 859–871.CrossRefGoogle Scholar
  8. 8.
    Mercadante, A. Z., & Bobbio, F. O. (2008). Anthocyanins in foods: Occurrence and physicochemical properties. In C. Socaciu (Ed.), Food colorants: Chemical and functional properties (pp. 241–276). Boca Raton: CRC.Google Scholar
  9. 9.
    Malien-Aubert, C., Dangles, O., & Amiot, M. J. (2001). Color stability of commercial anthocyanin-based extracts in relation to the phenolic composition. Protective effects by intra-and intermolecular copigmentation. Journal of Agricultural and Food Chemistry, 49(1), 170–176.CrossRefGoogle Scholar
  10. 10.
    Li, H., Zeyuan, D., Honghui, Z., Chanli, H., Ronghua, L., Christopher, Y. J., et al. (2012). Highly pigmented vegetables: Anthocyanin compositions and their role in antioxidant activities. Food Research International, 46(1), 250–259.CrossRefGoogle Scholar
  11. 11.
    Stintzing, F. C., & Carle, R. (2004). Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends in Food Science and Technology, 15(1), 19–38.CrossRefGoogle Scholar
  12. 12.
    Yoshida, K., Reiko, O., Kiyoshi, K., & Tadao, K. (2002). Prevention of UV-light induced E, Z-isomerization of caffeoyl residues in the diacylated anthocyanin, gentiodelphin, by intramolecular stacking. Tetrahedron Letters, 43(35), 6181–6184.CrossRefGoogle Scholar
  13. 13.
    Von Elbe, J., & Schwartz, S. (1996). Colorants. Food Chemistry, 3, 651–723.Google Scholar
  14. 14.
    Wesche-Ebeling, P., & Argaiz-Jamet, A. (2002). Stabilization mechanisms for anthocyanin the case for copolymerization reactions. In J. Welti-Chanes, G. V. Barbosa-Cánovas, & J. M. Aguilera (Eds.), Engineering and food for the 21st century (pp. 141–150). Boca Raton: CRC.Google Scholar
  15. 15.
    Brouillard, R., & Markakis, P. (1982). Anthocyanins as food colors. New York: Academic.Google Scholar
  16. 16.
    da Costa, C. T., Bryant, C. N., Sam, A. M., & Derek, H. (1998). Separation of blackcurrant anthocyanins by capillary zone electrophoresis. Journal of Chromatography A, 799(1), 321–327.CrossRefGoogle Scholar
  17. 17.
    Kennedy, J. A., & Waterhouse, A. L. (2000). Analysis of pigmented high-molecular-mass grape phenolics using ion-pair, normal-phase high-performance liquid chromatography. Journal of Chromatography A, 866(1), 25–34.CrossRefGoogle Scholar
  18. 18.
    Fleschhut, J., Kratzer, F., Rechkemmer, G., & Kulling, S. E. (2006). Stability and biotransformation of various dietary anthocyanins in vitro. European Journal of Nutrition, 45(1), 7–18.CrossRefGoogle Scholar
  19. 19.
    Ferreira Ozela, E., Stringheta, P. C., & Cano Chauca, M. (2007). Stability of anthocyanin in spinach vine (Basella rubra) fruits. Ciencia e Investigación Agraria, 34(2), 115–120.CrossRefGoogle Scholar
  20. 20.
    Boulton, R. (2001). The copigmentation of anthocyanins and its role in the color of red wine: A critical review. American Journal of Enology and Viticulture, 52(2), 67–87.Google Scholar
  21. 21.
    Davies, A., & Mazza, G. (1993). Copigmentation of simple and acylated anthocyanins with colorless phenolic compounds. Journal of Agricultural and Food Chemistry, 41(5), 716–720.CrossRefGoogle Scholar
  22. 22.
    Matsufuji, H., Otsuki, T., Takeda, T., Chino, M., & Takeda, M. (2003). Identification of reaction products of acylated anthocyanins from red radish with peroxyl radicals. Journal of Agricultural and Food Chemistry, 51(10), 3157–3161.CrossRefGoogle Scholar
  23. 23.
    Garcia-Viguera, C., & Bridle, P. (1999). Influence of structure on color stability of anthocyanins and flavylium salts with ascorbic acid. Food Chemistry, 64(1), 21–26.CrossRefGoogle Scholar
  24. 24.
    Mirabel, M., Saucier, C., Guerra, C., & Glories, Y. (1999). Copigmentation in model wine solutions: Occurrence and relation to wine aging. American Journal of Enology and Viticulture, 50(2), 211–218.Google Scholar
  25. 25.
    Salas, E., Atanasova, V., Poncet-Legrand, C., Meudec, E., Mazauric, J. P., & Cheynier, V. (2004). Demonstration of the occurrence of flavanol-anthocyanin adducts in wine and in model solutions. Analytica Chimica Acta, 513(1), 325–332.CrossRefGoogle Scholar
  26. 26.
    Clifford, M. N. (2000). Anthocyanins-nature, occurrence and dietary burden. Journal of the Science of Food and Agriculture, 80(7), 1063–1072.CrossRefGoogle Scholar
  27. 27.
    Starr, M., & Francis, F. (1973). Effect of metallic ions on color and pigment content of cranberry juice cocktail. Journal of Food Science, 38(6), 1043–1046.CrossRefGoogle Scholar
  28. 28.
    Hale, K. L., McGrath, S. P., Lombi, E., Stack, S. M., Terry, N., Pickering, I. J., et al. (2001). Molybdenum sequestration in brassica species. A role for anthocyanins? Plant Physiology, 126(4), 1391–1402.CrossRefGoogle Scholar
  29. 29.
    Yoshida, K., Kitahara, S., Ito, D., & Kondo, T. (2006). Ferric ions involved in the flower color development of the Himalayan blue poppy, Meconopsis grandis. Phytochemistry, 67(10), 992–998.CrossRefGoogle Scholar
  30. 30.
    Ito, F., Nobuaki, T., Akio, K., & Tsuneo, F. (2002). Why do flavylium salts show so various colors in solution?: Effect of concentration and water on the flavylium’s color changes. Journal of Photochemistry and Photobiology A: Chemistry, 150(1), 153–157.CrossRefGoogle Scholar
  31. 31.
    Markakis, P. (2012). Anthocyanins as food colors. New York: Elsevier.Google Scholar
  32. 32.
    Jiménez, N., Bohuon, P., Lima, J., Dornier, M., Vaillant, F., & Pérez, A. M. (2010). Kinetics of anthocyanin degradation and browning in reconstituted blackberry juice treated at high temperatures (100−180°C). Journal of Agricultural and Food Chemistry, 58(4), 2314–2322.CrossRefGoogle Scholar
  33. 33.
    Lin, Y.-C., & Chou, C.-C. (2009). Effect of heat treatment on total phenolic and anthocyanin contents as well as antioxidant activity of the extract from Aspergillus awamori-fermented black soybeans, a healthy food ingredient. International Journal of Food Science and Nutrition, 60(7), 627–636.Google Scholar
  34. 34.
    Sadilova, E., Florian, C., Stintzing, D. R., & Kammerer, R. C. (2009). Matrix dependent impact of sugar and ascorbic acid addition on color and anthocyanin stability of black carrot, elderberry and strawberry single strength and from concentrate juices upon thermal treatment. Food Research International, 42(8), 1023–1033.CrossRefGoogle Scholar
  35. 35.
    Skrede, R. E. G., Wrolstad, P. L., & Enersen, G. (1992). Color stability of strawberry and blackcurrant syrups. Journal of Food Science, 57(1), 172–177.CrossRefGoogle Scholar
  36. 36.
    Odriozola-Serrano, I., Soliva-Fortuny, R., & Martín-Belloso, O. (2010). Changes in bioactive composition of fresh-cut strawberries stored under superatmospheric oxygen, low-oxygen or passive atmospheres. Journal of Food Composition and Analysis, 23(1), 37–43.CrossRefGoogle Scholar
  37. 37.
    Zheng, Y., Shiow, Y. W., Chien, Y. W., & Wei, Z. (2007). Changes in strawberry phenolics, anthocyanins, and antioxidant capacity in response to high oxygen treatments. LWT – Food Science and Technology, 40(1), 49–57.CrossRefGoogle Scholar
  38. 38.
    Kearsley, M., & Rodriguez, N. (1981). The stability and use of natural colors in foods: Anthocyanin, β-carotene and riboflavin. International Journal of Food Science and Technology, 16(4), 421–431.CrossRefGoogle Scholar
  39. 39.
    Amr, A., & Al Tamimi, E. (2007). Stability of the crude extracts of Ranunculus asiaticus anthocyanins and their use as food colorants. International Journal of Food Science and Technology, 42(8), 985–991.CrossRefGoogle Scholar
  40. 40.
    Inami, O., Itaru, T., Hiroe, K., & Nobuji, N. (1996). Stability of anthocyanins of Sambucus canadensis and Sambucus nigra. Journal of Agricultural and Food Chemistry, 44(10), 3090–3096.CrossRefGoogle Scholar
  41. 41.
    Shi, Z., Bassa, I. A., Gabriel, S. L., & Francis, F. J. (1992). Anthocyanin pigments of sweet potatoes–Ipomoea batatas. Journal of Food Science, 57(3), 755–757.Google Scholar
  42. 42.
    Maier, T., Matthias, F., Andreas, S., Dietmar, R., & Kammerer, R. C. (2009). Process and storage stability of anthocyanins and non-anthocyanin phenolics in pectin and gelatin gels enriched with grape pomace extracts. European Food Research and Technology, 229(6), 949–960.CrossRefGoogle Scholar
  43. 43.
    Huang, H. (1956). The kinetics of the decolorization of anthocyanins by fungal “anthocyanase” 1. Journal of the American Chemical Society, 78(11), 2390–2393.CrossRefGoogle Scholar
  44. 44.
    Kader, F., Irmouli, M., Zitouni, N., Nicolas, J. P., & Metche, M. (1999). Degradation of cyanidin 3-glucoside by caffeic acid o-quinone. Determination of the stoichiometry and characterization of the degradation products. Journal of Agricultural and Food Chemistry, 47(11), 4625–4630.CrossRefGoogle Scholar
  45. 45.
    Garcia-Palazon, A., Suthanthangjai, W., Kajda, P., & Ioannis, Z. (2004). The effects of high hydrostatic pressure on β-glucosidase, peroxidase and polyphenoloxidase in red raspberry (Rubus idaeus) and strawberry (Fragaria ananassa). Food Chemistry, 88(1), 7–10.CrossRefGoogle Scholar
  46. 46.
    Fang, Z., Min, Z., Yunfei, S., & Jingcai, S. (2007). Polyphenol oxidase from bayberry (Myrica rubra Sieb. et Zucc.) and its role in anthocyanin degradation. Food Chemistry, 103(2), 268–273.Google Scholar
  47. 47.
    Mathew, A., & Parpia, H. (1971). Food browning as a polyphenol reaction. Advances in Food Research, 19, 75–145.CrossRefGoogle Scholar
  48. 48.
    Poei‐Langston, M., & Wrolstad, R. (1981). Color degradation in an ascorbic acid anthocyanin flavanol model system. Journal of Food Science, 46(4), 1218–1236.CrossRefGoogle Scholar
  49. 49.
    Pacheco-palencia, L. A., Hawken, P., & Talcott, S. T. (2007). Juice matrix composition and ascorbic acid fortification effects on the phytochemical, antioxidant and pigment stability of açai (Euterpe oleracea Mart.). Food Chemistry, 105(1), 28–35.Google Scholar
  50. 50.
    Rubinskiene, M., Viskelis, P., Jasutiene, I., Viskeliene, R., & Bobinas, C. (2005). Impact of various factors on the composition and stability of black currant anthocyanins. Food Research International, 38(8), 867–871.CrossRefGoogle Scholar
  51. 51.
    Tsai, P. J., Delva, L., Yu, T. Y., Huang, Y. T., & Dufosse, L. (2005). Effect of sucrose on the anthocyanin and antioxidant capacity of mulberry extract during high temperature heating. Food Research International, 38(8), 1059–1065.CrossRefGoogle Scholar
  52. 52.
    Nikkhah, E., Khayamy, M., Heidari, R., & Jamee, R. (2007). Effect of sugar treatment on stability of anthocyanin pigments in berries. Journal of Biological Sciences, 7(8), 1412–1417.CrossRefGoogle Scholar
  53. 53.
    Cavalcanti, R. N., Santos, D. T., & Meireles, M. A. A. (2011). Non-thermal stabilization mechanisms of anthocyanins in model and food systems – An overview. Food Research International, 44(2), 499–509.CrossRefGoogle Scholar
  54. 54.
    Patras, A., Nigel, P. B., O’Donnell, C., & Tiwari, B. K. (2010). Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends in Food Science and Technology, 21(1), 3–11.CrossRefGoogle Scholar
  55. 55.
    Oren-Shamir, M. (2009). Does anthocyanin degradation play a significant role in determining pigment concentration in plants? Plant Science, 177(4), 310–316.CrossRefGoogle Scholar
  56. 56.
    Chalker Scott, L. (1999). Environmental significance of anthocyanins in plant stress responses. Photochemistry and Photobiology, 70(1), 1–9.CrossRefGoogle Scholar
  57. 57.
    Steyn, W. J., Wand, S. J. E., Holcroft, D. M., & Jacobs, G. (2002). Anthocyanins in vegetative tissues: A proposed unified function in photoprotection. New Phytologist, 155(3), 349–361.CrossRefGoogle Scholar
  58. 58.
    Winkel-Shirley, B. (2002). Biosynthesis of flavonoids and effects of stress. Current Opinion in Plant Biology, 5(3), 218–223.CrossRefGoogle Scholar
  59. 59.
    Vaknin, H., Bar-Akiva, A., Ovadia, R., Nissim-Levi, A., Forer, I., Weiss, D., et al. (2005). Active anthocyanin degradation in Brunfelsia calycina (yesterday–today–tomorrow) flowers. Planta, 222(1), 19–26.CrossRefGoogle Scholar
  60. 60.
    Da Costa, C. T., Horton, D., & Margolis, S. A. (2000). Analysis of anthocyanins in foods by liquid chromatography, liquid chromatography-mass spectrometry and capillary electrophoresis. Journal of Chromatography A, 881(1), 403–410.CrossRefGoogle Scholar
  61. 61.
    Valentová, K., Vrba, J., Bancířová, M., Ulrichová, J., & Křen, V. (2014). Isoquercitrin: Pharmacology, toxicology, and metabolism. Food and Chemical Toxicology, 68, 267–282.CrossRefGoogle Scholar
  62. 62.
    Cai, Y., & Corke, H. (2000). Production and properties of spray dried amaranthus betacyanin pigments. Journal of Food Science, 65(7), 1248–1252.CrossRefGoogle Scholar
  63. 63.
    Mahdavi, S. A., Seid, M. J., Mohammad, G., & Elham, A. (2014). Spray-drying microencapsulation of anthocyanins by natural biopolymers: A review. Drying Technology, 32(5), 509–518.CrossRefGoogle Scholar

Copyright information

© The Authors 2016

Authors and Affiliations

  • Muhammad Riaz
    • 1
  • Muhammad Zia-Ul-Haq
    • 2
  • Bashar Saad
    • 3
    • 4
  1. 1.Shaheed Benazir Bhutto UniversitySheringalPakistan
  2. 2.The Patent OfficeKarachiPakistan
  3. 3.Al-Qasemi Academic CollegeBaga AlgharbiyaIsrael
  4. 4.Arab American University JeninJeninPalestine

Personalised recommendations