On the Usage of General-Purpose Compression Techniques for the Optimization of Inter-robot Communication

  • Gonçalo S. Martins
  • David Portugal
  • Rui P. Rocha
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 370)

Abstract

Managing the bandwidth requirements of a team of robots operating cooperatively is an ubiquitous and commonly overlooked problem, despite being a crucial issue in the successful deployment of robotic teams. As the team’s size grows, its bandwidth requirements can easily rise to unsustainable levels. On the other hand, general-purpose compression techniques are commonly used to transmit data through constrained communication channels, and may offer a solution to this problem. In this paper, we study the possibility of using general-purpose compression techniques to improve the efficiency of inter-robot communication, firstly by comparing the performance of various compression techniques in the context a of multi-robot simultaneous localization and mapping (SLAM) scenarios using simplified occupancy grids, and secondly by performing tests with one of the compression techniques on real-world data.

Keywords

Compression methods Multi-robot systems Efficient information sharing 

References

  1. 1.
    Pedrosa, E., Lau, N., Pereira, A.: Online SLAM Based on a Fast Scan-Matching Algorithm. In: Correia, L., Reis, L.P., Cascalho, J. (eds.) EPIA 2013. LNCS, vol. 8154, pp. 295–306. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  2. 2.
    Rocha, R.P., Portugal, D., Couceiro, M., Araujo, F., Menezes, P., Lobo, J.: The CHOPIN project: Cooperation between Human and rObotic teams in catastroPhic INcidents. In: IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 1–4. IEEE (2013)Google Scholar
  3. 3.
    Lazaro, M.T., Paz, L.M., Pinies, P., Castellanos, J.A., Grisetti, G.: Multi-robot SLAM using condensed measurements. In: Proceedings of 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2013), IEEE (2013)Google Scholar
  4. 4.
    Elfes, A.: Using occupancy grids for mobile robot perception and navigation. Computer 22, 46–57 (1989)CrossRefGoogle Scholar
  5. 5.
    Rocha, R.P.: Building volumetric maps with cooperative mobile robots and useful information sharing: a distributed control approach based on entropy. PhD thesis, University of Porto, Portugal (2006)Google Scholar
  6. 6.
    Salomon, D.: A concise introduction to data compression. Springer, Berlin (2007)Google Scholar
  7. 7.
    Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory 23, 337–343 (1977)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding. IEEE Trans. Inf. Theory 24, 530–536 (1978)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Carpin, S.: Fast and accurate map merging for multi-robot systems. Auton. Robots 25, 305–316 (2008)CrossRefGoogle Scholar
  10. 10.
    Bermond, J.C., Gargano, L., Perennes, S., Rescigno, A.A., Vaccaro, U.: Efficient collective communication in optical networks. In: Automata, Languages and Programming, pp. 574–585. Springer (1996)Google Scholar
  11. 11.
    Cunningham, A., Paluri, M., Dellaert, F.: DDF-SAM: Fully distributed SLAM using constrained factor graphs. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3025–3030. IEEE (2010)Google Scholar
  12. 12.
    Deutsch, P.: DEFLATE compressed data format specification version 1.3. RFC 1951 (Informational) (1996)Google Scholar
  13. 13.
    Huffman, D.A.: A method for the construction of minimum redundancy codes. Proc. IRE 40, 1098–1101 (1952)CrossRefMATHGoogle Scholar
  14. 14.
    Rodeh, O., Teperman, A.: zFS-a scalable distributed file system using object disks. In: 20th IEEE/11th NASA Goddard Conference on Mass Storage Systems and Technologies, 2003. (MSST 2003). Proceedings, pp. 207–218. IEEE (2003)Google Scholar
  15. 15.
    Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with Rao-Blackwellized particle filters. IEEE Trans. Rob. 23, 34–46 (2007)CrossRefGoogle Scholar
  16. 16.
    Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.: ROS: an open-source Robot Operating System. In: ICRA Workshop on Open Source Software. Vol. 3 (2009)Google Scholar
  17. 17.
    Kümmerle, R., Steder, B., Dornhege, C., Ruhnke, M., Grisetti, G., Stachniss, C., Kleiner, A.: On measuring the accuracy of SLAM algorithms. Auton. Robots 27, 387–407 (2009)CrossRefGoogle Scholar
  18. 18.
    Konolige, K., Grisetti, G., Kummerle, R., Burgard, W., Limketkai, B., Vincent, R.: Efficient sparse pose adjustment for 2d mapping. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 22–29. IEEE (2010)Google Scholar
  19. 19.
    Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable slam system with full 3d motion estimation. In: IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 155–160. IEEE (2011)Google Scholar
  20. 20.
    Araujo, F., Santos, J., Rocha, R.P.: Implementation of a routing protocol for Ad Hoc networks in search and rescue robotics. In: Proceedings of IEEE 2014 Wireless Days (WD’14), Rio de Janeiro, Brazil, 12–14 Nov 2014Google Scholar
  21. 21.
    Ferreira, J.F., Castelo-Branco, M., Dias, J.: A hierarchical Bayesian framework for multimodal active perception. Adapt. Behav. 20, 172–190 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Gonçalo S. Martins
    • 1
  • David Portugal
    • 1
  • Rui P. Rocha
    • 1
  1. 1.Institute of Systems and RoboticsUniversity of CoimbraCoimbraPortugal

Personalised recommendations