Computational Intelligence Methods in Forward-Looking Explosive Hazard Detection

  • Timothy C. Havens
  • Derek T. Anderson
  • Kevin Stone
  • John Becker
  • Anthony J. Pinar
Part of the Studies in Computational Intelligence book series (SCI, volume 621)


This chapter discusses several methods for forward-looking (FL) explosive hazard detection (EHD) using FL infrared (FLIR) and FL ground penetrating radar (FLGPR). The challenge in detecting explosive hazards with FL sensors is that there are multiple types of targets buried at different depths in a highly-cluttered environment. A wide array of target and clutter signatures exist, which makes detection algorithm design difficult. Recent work in this application has focused on fusion methods, including fusion of multiple modalities of sensors (e.g., GPR and IR), fusion of multiple frequency sub-band images in FLGPR, and feature-level fusion using multiple kernel and iECO learning. For this chapter, we will demonstrate several types of EHD techniques, including kernel methods such as support vector machines (SVMs), multiple kernel learning MKL, and feature learning methods, including deep learners and iECO learning. We demonstrate the performance of several algorithms using FLGPR and FLIR data collected at a US Army test site. The summary of this work is that deep belief networks and evolutionary approaches to feature learning were shown to be very effective both for FLGPR and FLIR based EHD.


Sensor fusion Explosive hazard detection Aggregation Multiple kernel learning Deep learning Fuzzy integral 



This work is funded in part by a National Institute of Justice grant (2011-DN-BX-K838), U.S. Army (W909MY-13-C0013, W909MY-13-C0029) and Army Research Office (W911NF-14-1-0114 and 57940-EV) in support of the U.S. Army RDECOM CERDEC NVESD. Superior, a high performance computing cluster at Michigan Technological University, was used in obtaining results presented in this work.


  1. 1.
    Anderson, D.T., Havens, T.C., Wagner, C., Keller, J., Anderson, M.F., Wescott, D.J.: Extension of the fuzzy integral for general fuzzy set-valued information. IEEE Trans. Fuzzy Syst. 22(6), 1625–1639 (2014)CrossRefGoogle Scholar
  2. 2.
    Anderson, D.T., Stone, K., Keller, J.M., Spain, C.: Combination of anomaly algorithms and image features for explosive hazard detection in forward looking infrared imagery. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 5(1), 313–323 (2012)Google Scholar
  3. 3.
    Anderson, D.T., Stone, K., Keller, J.M., Rose, J.: Anomaly detection ensemble fusion for buried explosive material detection in forward looking infrared imaging for addressing diurnal temperature variation. In: Proceedings of the SPIE, vol. 8357, p. 83570T (2012)Google Scholar
  4. 4.
    Becker, J., Havens, T.C., Pinar, A., Schulz, T.J.: Deep belief networks for false alarm rejection in forward-looking ground-penetrating radar. In: Proceedings of the SPIE (2015)Google Scholar
  5. 5.
    Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: ACM Workshop on COLT, pp. 144–152 (1992)Google Scholar
  6. 6.
    Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Sys. Tech. 2(3), 1–27 (2011)CrossRefGoogle Scholar
  7. 7.
    Collins, L.M., Torrione, P.A., Throckmorton, C.S., Liao, X., Zhu, Q.E., Liu, Q., Carin, L., Clodfelter, F., Frasier, S.: Algorithms for landmine discrimination using the NIITEK ground penetrating radar. Proc. SPIE. 4742, 709–718 (2002)CrossRefGoogle Scholar
  8. 8.
    Cortes, C., Vapnik, V.N.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)zbMATHGoogle Scholar
  9. 9.
    Costley, R.D., Sabatier, J.M., Xiang, N.: Forward-looking acoustic mine detection system. Proc. SPIE. 4394, 617–626 (2001)CrossRefGoogle Scholar
  10. 10.
    Cremer, F., Chavemaker, J.G., deJong, W., Schutte, K.: Comparison of vehicle-mounted forward-looking polarimetric infrared and downward-looking infrared sensors for landmine detection. Proc. SPIE. 5089, 517–526 (2003)CrossRefGoogle Scholar
  11. 11.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005. vol. 1, pp. 886–893 (2005)Google Scholar
  12. 12.
    Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009, pp. 248–255 (2009)Google Scholar
  13. 13.
    Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: Decaf: A deep convolutional activation feature for generic visual recognition. CoRR abs/1310.1531 (2013),
  14. 14.
    Gader, P.D., Grandhi, R., Lee, W.H., Wilson, J.N., Ho, K.C.: Feature analysis for the NIITEK ground penetrating radar using order weighted averaging operators for landmine detection. In: Proceedings of the SPIE, vol. 5415, pp. 953–962 (2004)Google Scholar
  15. 15.
    Havens, T.C., Becker, J.T., Pinar, A.J., Schulz, T.J.: Multi-band sensor-fused explosive hazards detection in forward-looking ground-penetrating radar. In: Proceedings SPIE, vol. 9072, p. 90720T (2014)Google Scholar
  16. 16.
    Havens, T.C., Ho, K.C., Farrell, J., Keller, J.M., Popescu, M., Ton, T.T., Wong, D.C., Soumekh, M.: Locally adaptive detection algorithm for forward-looking ground-penetrating radar. In: Proceedings of the SPIE, vol. 7664, p. 76442E (2010)Google Scholar
  17. 17.
    Havens, T.C., Keller, J.M., Stone, K., Ho, K.C., Ton, T.T., Wong, D.C., Soumekh, M.: Multiple kernel learning for explosive hazards detection in FLGPR. In: Proceedings of the SPIE, vol. 8357, p. 83571D (2012)Google Scholar
  18. 18.
    Havens, T.C., Spain, C.J., Ho, K.C., Keller, J.M., Ton, T.T., Wong, D.C., Soumekh, M.: Improved detection and false alarm rejection using ground-penetrating radar and color imagery in a forward-looking system. In: Proceedings of the SPIE, vol. 7664, p. 76441U (2010)Google Scholar
  19. 19.
    Havens, T.C., Stone, K., Keller, J.M., Ho, K.C.: Sensor-fused detection of explosive hazards. In: Proceedings of the SPIE, vol. 7303, p. 73032A (2009)Google Scholar
  20. 20.
    Hinton, G., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural computation 18(7), 1527–1554 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Hu, L., Anderson, D.T., Havens, T.C.: Multiple kernel aggregation using fuzzy integrals. In: IEEE International Conference Fuzzy Systems, pp. 1–7 (2013)Google Scholar
  23. 23.
    Hu, L., Anderson, D.T., Havens, T.C., Keller, J.M.: Efficient and scalable nonlinear multiple kernel aggregation using the choquet integral. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R. (eds.) Information Processing and Management of Uncertainty in Knowledge-Based Systems. Communications in Computer and Information Science, vol. 442, pp. 206–215. Springer (2014)Google Scholar
  24. 24.
    Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y.: What is the best multi-stage architecture for object recognition? In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2146–2153 (2009)Google Scholar
  25. 25.
    JIEDDO COIC MID: Global IED monthly summary report (2012)Google Scholar
  26. 26.
    Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Principles of Neural Science, 4 edn. McGraw-Hill, New York (2000)Google Scholar
  27. 27.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates, Inc. (2012)Google Scholar
  28. 28.
    Lanckriet, G.R.G., Cristianini, N., Bartlett, P., Ghaoui, L.E., Jordan, M.I.: Learning the kernel matrix with semidefinite programming. J. Mach. Learn. Res. 5, 27–72 (2004)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Lawrence, S., Giles, C.L., Tsoi, A.C., Back, A.D.: Face recognition: a convolutional neural-network approach. IEEE Trans. Neural Netw. 8(1), 98–113 (1997)CrossRefGoogle Scholar
  30. 30.
    LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRefGoogle Scholar
  31. 31.
    LeCun, Y., Jackel, L.D., Bottou, L., Brunot, A., Cortes, C., Denker, J.S., Drucker, H., Guyon, I., Müller, U., Säckinger, E., Simard, P., Vapnik, V.: Comparison of learning algorithms for handwritten digit recognition. In: International conference on artificial neural networks, vol. 60 (1995)Google Scholar
  32. 32.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: International Conference Computer Vision, pp. 1150–1157 (1999)Google Scholar
  33. 33.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 22(10), 761–767 (2004)CrossRefGoogle Scholar
  34. 34.
    Mercer, J.: Functions of positive and negative type and their connection with the theory of integral equations. Philos. Trans. R. Soc. A 209, 441–458 (1909)CrossRefzbMATHGoogle Scholar
  35. 35.
    Ojala, T., Pietikainen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Patt. Recognit. 29(1), 51–59 (1996)CrossRefGoogle Scholar
  36. 36.
    Palm, R.B.: Prediction as a candidate for learning deep hierarchical models of data. Ph.D. thesis, Technical University of Denmark (2012)Google Scholar
  37. 37.
    Playle, N., Port, D.M., Rutherford, R., Burch, I.A., Almond, R.: Infrared polarization sensor for forward-looking mine detection. Proc. SPIE. 4742, 11–18 (2002)CrossRefGoogle Scholar
  38. 38.
    Price, S.R., Anderson, D.T., Luke, R.H.: An improved evolution-constructed (iECO) features framework. In: IEEE Symposium Series on Computational Intelligence (2014)Google Scholar
  39. 39.
    Sarikaya, R., Hinton, G.E., Ramabhadran, B.: Deep belief nets for natural language call-routing. In: IEEE International Conference Acoustics, Speech and Signal Processing, pp. 5680–5683 (2011)Google Scholar
  40. 40.
    Scott, G.J., Anderson, D.T.: Importance-weighted multi-scale texture and shape descriptor for object recognition in satellite imagery. In: IEEE International Geoscience and Remote Sensing Symposium, pp. 79–82 (2012)Google Scholar
  41. 41.
    Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1999, vol. 2 (1999)Google Scholar
  42. 42.
    Stone, K., Keller, J.M.: Clutter rejection by cluster analysis in an automatic detection system for buried explosive hazards in forward looking imagery. In: Proceedings of the SPIE (2013)Google Scholar
  43. 43.
    Stone, K., Keller, J.M.: Convolutional neural network approach for buried target recognition in FL-LWIR imagery. In: Proceedings of the SPIE (2014)Google Scholar
  44. 44.
    Stone, K., Keller, J.M., Ho, K.C., Gader, P.D.: On the registration of FLGPR and IR data for the forward-looking landmine detection system and its use in eliminating FLGPR false alarms. In: Proceedings of the SPIE, vol. 6953 (2008)Google Scholar
  45. 45.
    Stone, K., Keller, J.M., Popescu, M., Havens, T.C., Ho, K.C.: Forward-looking anomaly detection via fusion of infrared and color imagery. In: Proceedings of the SPIE, vol. 7664, p. 766425 (2010)Google Scholar
  46. 46.
    Stone, K.E., Keller, J.M., Anderson, D.T., Barclay, D.B.: An automatic detection system for buried explosive hazards in fl-lwir and FL-GPR data. In: Proceedings of the SPIE Conference Detection and Sensing of Mines, Explosive Objects, and Obscured Targets (2012)Google Scholar
  47. 47.
    Xu, Z., Jin, R., Yang, H., King, I., Lyu, M.R.: Simple and efficient multiple kernel learning by group lasso. In: Proceedings of the Interence Conference Machine Learning, pp. 1175–1182 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Timothy C. Havens
    • 1
  • Derek T. Anderson
    • 2
  • Kevin Stone
    • 3
  • John Becker
    • 1
  • Anthony J. Pinar
    • 1
  1. 1.Department of Electrical and Computer Engineering/Department of Computer ScienceMichigan Technological UniversityHoughtonUSA
  2. 2.Department of Electrical and Computer EngineeringMississippi State UniversityMississippi StateUSA
  3. 3.Department of Electrical and Computer EngineeringUniversity of MissouriColumbiaUSA

Personalised recommendations