Advertisement

Rapid Reconnection and Field Line Topology

  • E. N. Parker
  • A. F. Rappazzo
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 427)

Abstract

Rapid reconnection of magnetic fields arises where the magnetic stresses push the plasma and field so as to increase the field gradient without limit. The intent of the present writing is to show the larger topological context in which this commonly occurs. Consider an interlaced field line topology as commonly occurs in the bipolar magnetic regions on the Sun. A simple model is constructed starting with a strong uniform magnetic field B0 in the z-direction through an infinitely conducting fluid from the end plate z = 0 to z = L with the field lines tied at both end plates. Field line interlacing is introduced by smooth continuous random turbulent mixing of the footpoints at the end plates. This configuration is well suited to be modeled with the reduced magnetohydrodynamic (MHD) equations, with the equilibria given by the solutions of the 2D vorticity equation in this case. The set of continuous solutions to the “vorticity” equation have greatly restricted topologies, so almost all interlaced field topologies do not have continuous solutions. That infinite set represents the “weak” solutions of the vorticity equation, wherein there are surfaces of tangential discontinuity (current sheets) in the field dividing regions of smooth continuous field. It follows then that current sheets are to be found throughout interlaced fields, providing potential sites for rapid reconnection. That is to say, rapid reconnection and nanoflaring are expected throughout the bipolar magnetic fields in the solar corona, providing substantial heating to the ambient gas. Numerical simulations provide a direct illustration of the process, showing that current sheets thin on fast ideal Alfvén timescales down to the smallest numerically resolved scales. The asymmetric structure of the equilibria and the interlacing threshold for the onset of singularities are discussed. Current sheet formation and dynamics are further analyzed with dissipative and ideal numerical simulations.

Keywords

Coronal heating Field line topologies Flares Interlaced field lines Magnetic equilibrium equation Numerical simulations Rapid reconnection Rate of reconnection Singular flux surfaces 

Notes

Acknowledgements

It is a pleasure to thank the organizers of the “Parker Workshop on Magnetic Reconnection” for their work and invitations. This research has been supported in part by NASA through a subcontract with the Jet Propulsion Laboratory, California Institute of Technology, and NASA LWS grants number NNX15AB89G and NNX15AB88G. Computational resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center.

References

  1. A. Alexakis, P.D. Mininni, A. Pouquet, Phys. Rev. E 72(4), 046301 (2005)CrossRefADSMathSciNetGoogle Scholar
  2. G.K. Batchelor, Phys. Fluids 12, 233 (1969)CrossRefADSzbMATHGoogle Scholar
  3. A.L. Bertozzi, P. Constantin, Commun. Math. Phys. 152, 19 (1993)CrossRefADSMathSciNetzbMATHGoogle Scholar
  4. A. Bhattacharjee, Y.-M. Huang, H. Yang, B. Rogers, Phys. Fluids 16, 112102 (2009)Google Scholar
  5. D. Biskamp, Phys. Fluids 29, 1520 (1986)CrossRefADSzbMATHGoogle Scholar
  6. D. Biskamp, Magnetohydrodynamic Turbulence (Cambridge University Press, Cambridge, 2003)CrossRefzbMATHGoogle Scholar
  7. D. Biskamp, J.F. Drake, Phys. Rev. Lett. 73, 971 (1994)CrossRefADSGoogle Scholar
  8. D. Biskamp, E. Schwarz, J.F. Drake, Phys. Plasmas 4, 1002 (1997)CrossRefADSMathSciNetGoogle Scholar
  9. G. Boffetta, R.E. Ecke, Ann. Rev. Fluid Mech. 44, 427 (2012)CrossRefADSMathSciNetGoogle Scholar
  10. M.E. Brachet, M.D. Bustamante, G. Krstulovic, P.D. Mininni, A. Pouquet, D. Rosenberg, Phys. Rev. E 87(1), 013110 (2013)CrossRefADSGoogle Scholar
  11. S.V. Bulanov, S.I. Syrovatskii, J. Sakai, J. Exp. Theor. Phys. Lett. 28, 177 (1978)Google Scholar
  12. M.D. Bustamante, M. Brachet, Phys. Rev. E 86(6), 066302 (2012)CrossRefADSGoogle Scholar
  13. C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods (Springer, Berlin, 2006)zbMATHGoogle Scholar
  14. J.Y. Chemin, Ann. Sci. l’École Normale Supérieure 26(4), 517 (1993)MathSciNetzbMATHGoogle Scholar
  15. R. Courant, D. Hilbert, Methods of Mathematical Physics, vol. 2 (Interscience, New York, 1980), pp. 635–636Google Scholar
  16. R.B. Dahlburg, G. Einaudi, A.F. Rappazzo, M. Velli, Astron. Astrophys. 544, L20 (2012)CrossRefADSGoogle Scholar
  17. G. Dar, M.K. Verma, V. Eswaran, Phys. D Nonlinear Phenom. 157, 207 (2001)CrossRefADSzbMATHGoogle Scholar
  18. P. Dmitruk, D.O. Gómez, Astrophys. J. 484, L83 (1997)CrossRefADSGoogle Scholar
  19. P. Dmitruk, D.O. Gómez, Astrophys. J. 527, L63 (1999)CrossRefADSGoogle Scholar
  20. P. Dmitruk, D.O. Gómez, E.E. DeLuca, Astrophys. J. 505, 974 (1998)CrossRefADSGoogle Scholar
  21. P. Dmitruk, D.O. Gómez, W.H. Matthaeus, Phys. Plasmas 10, 3584 (2003)CrossRefADSGoogle Scholar
  22. J.F. Drake, R.G. Kleva, M.E. Mandt, Phys. Rev. Lett. 73, 1251 (1994)CrossRefADSGoogle Scholar
  23. J.F. Drake, M.A. Shay, W. Thongthai, M. Swisdak, Phys. Rev. Lett. 94(9), 095001 (2005)CrossRefADSGoogle Scholar
  24. G. Einaudi, M. Velli, H. Politano, A. Pouquet, Astrophys. J. 457, L113 (1996)CrossRefADSGoogle Scholar
  25. U. Frisch, Turbulence. The Legacy of A. N. Kolmogorov (Cambridge University Press, Cambridge, 1995)Google Scholar
  26. U. Frisch, T. Matsumoto, J. Bec, J. Stat. Phys. 113(5–6), 761 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  27. K. Galsgaard, Å. Nordlund, J. Geophys. Res. 101, 13445 (1996)CrossRefADSGoogle Scholar
  28. S. Galtier, H. Politano, A. Pouquet, Phys. Rev. Lett. 79, 2807 (1997)CrossRefADSGoogle Scholar
  29. M.K. Georgoulis, M. Velli, G. Einaudi, Astrophys. J. 497, 957 (1998)CrossRefADSGoogle Scholar
  30. J.D. Gibbon, Phys. D Nonlinear Phenom. 237, 1894 (2008)CrossRefADSMathSciNetzbMATHGoogle Scholar
  31. D.L. Hendrix, G. van Hoven, Astrophys. J. 467, 887 (1996)CrossRefADSGoogle Scholar
  32. M. Hossain, P.C. Gray, D.H. Pontius Jr., W.H. Matthaeus, S. Oughton, Phys. Fluids 7, 2886 (1995)CrossRefADSzbMATHGoogle Scholar
  33. Å.M. Janse, B.C. Low, E.N. Parker, Phys. Plasmas 17(9), 092901 (2010)CrossRefADSGoogle Scholar
  34. B.B. Kadomtsev, O.P. Pogutse, Sov. J. Exp. Theor. Phys. 38, 283 (1974)ADSGoogle Scholar
  35. Y. Katsukawa, Publ. Astron. Soc. Jpn. 55, 1025 (2003)CrossRefADSGoogle Scholar
  36. A. Kolmogorov, Akad. Nauk SSSR Dokl. 30, 301 (1941)ADSGoogle Scholar
  37. R.H. Kraichnan, Phys. Fluids 10, 1417 (1967)CrossRefADSGoogle Scholar
  38. R.H. Kraichnan, J. Fluid Mech. 47, 525 (1971)CrossRefADSzbMATHGoogle Scholar
  39. R.H. Kraichnan, D. Montgomery, Rep. Prog. Phys. 43, 547 (1980)CrossRefADSMathSciNetGoogle Scholar
  40. G. Krstulovic, M.E. Brachet, A. Pouquet, Phys. Rev. E 84(1), 016410 (2011)CrossRefADSGoogle Scholar
  41. D. Kumar, R. Bhattacharyya, P.K. Smolarkiewicz, Phys. Plasmas 20(11), 112903 (2013)CrossRefADSGoogle Scholar
  42. S. Kumar, R. Bhattacharyya, P.K. Smolarkiewicz, Phys. Plasmas 21(5), 052904 (2014)CrossRefADSGoogle Scholar
  43. S. Landi, L. Del Zanna, E. Papini, F. Pucci, M. Velli, Astrophys. J. 806, 131 (2015)CrossRefADSGoogle Scholar
  44. G. Lapenta, Phys. Rev. Lett. 100, 235001 (2008)CrossRefADSGoogle Scholar
  45. D.W. Longcope, H.R. Strauss, Phys. Fluids B 5, 2858 (1993)CrossRefADSMathSciNetGoogle Scholar
  46. N.F. Loureiro, A.A. Schekochihin, S.C. Cowley, Phys. Fluids 14, 100703 (2007)Google Scholar
  47. B.C. Low, Astrophys. J. 768, 7 (2013)CrossRefADSGoogle Scholar
  48. B.C. Low, Sci. China Phys. Mech. Astron. 58, 015201 (2015)CrossRefGoogle Scholar
  49. A.J. Majda, A.L. Bertozzi, Vorticity and Incompressible Flow (Cambridge University Press, Cambridge, 2001)CrossRefGoogle Scholar
  50. W.H. Matthaeus, S. Dasso, J.M. Weygand, L.J. Milano, C.W. Smith, M.G. Kivelson, Phys. Rev. Lett. 95(23), 231101 (2005)CrossRefADSGoogle Scholar
  51. C.S. Ng, A. Bhattacharjee, Phys. Plasmas 5, 4028 (1998)CrossRefADSGoogle Scholar
  52. E.N. Parker, J. Geophys. Res. 62, 509 (1957)CrossRefADSGoogle Scholar
  53. E.N. Parker, Astrophys. J. 174, 499 (1972)CrossRefADSGoogle Scholar
  54. E.N. Parker, Cosmical Magnetic Fields: Their Origin and Their Activity (Oxford University Press, New York, 1979)Google Scholar
  55. E.N. Parker, Astrophys. J. 264, 635 (1983)CrossRefADSGoogle Scholar
  56. E.N. Parker, Astrophys. J. 330, 474 (1988)CrossRefADSGoogle Scholar
  57. E.N. Parker, Geophys. Astrophys. Fluid Dyn. 46, 105 (1989a)CrossRefADSGoogle Scholar
  58. E.N. Parker, Geophys. Astrophys. Fluid Dyn. 45, 159 (1989b)CrossRefADSGoogle Scholar
  59. E.N. Parker, Phys. Fluids B 3, 2652 (1991)CrossRefADSMathSciNetGoogle Scholar
  60. E.N. Parker, Spontaneous Current Sheets in Magnetic Fields (Oxford University Press, New York, 1994)Google Scholar
  61. E.N. Parker, Conversations on Electric and Magnetic Fields in the Cosmos (Princeton University Press, Princeton, 2007)Google Scholar
  62. E.N. Parker, Field Line Topology and Rapid Reconnection. Astrophysics and Space Science Proceedings, vol. 33 (Springer Berlin Heidelberg, 2012a), pp. 3–9Google Scholar
  63. E.N. Parker, Plasma Phys. Controlled Fusion 54(12), 124028 (2012b)CrossRefADSGoogle Scholar
  64. H.E. Petschek, NASA Spec. Publ. 50, 425 (1964)ADSGoogle Scholar
  65. F. Pucci, M. Velli, Astrophys. J. 780, L19 (2014)CrossRefADSGoogle Scholar
  66. A.F. Rappazzo, Astrophys. J. 815, 8 (2015). arX iv.1505.04370 [astro-ph, SR]CrossRefADSGoogle Scholar
  67. A.F. Rappazzo, E.N. Parker, Astrophys. J. 773, L2 (2013)CrossRefADSGoogle Scholar
  68. A.F. Rappazzo, M. Velli, Phys. Rev. E 83(6), 065401 (2011)CrossRefADSGoogle Scholar
  69. A.F. Rappazzo, M. Velli, G. Einaudi, R.B. Dahlburg, Astrophys. J. 657, L47 (2007)CrossRefADSGoogle Scholar
  70. A.F. Rappazzo, M. Velli, G. Einaudi, R.B. Dahlburg, Astrophys. J. 677, 1348 (2008)CrossRefADSGoogle Scholar
  71. A.F. Rappazzo, M. Velli, G. Einaudi, Astrophys. J. 722, 65 (2010)CrossRefADSGoogle Scholar
  72. H.A. Rose, P.L. Sulem, J. Phys. Fr. 39(5), 441 (1978)CrossRefMathSciNetGoogle Scholar
  73. H.R. Strauss, Phys. Fluids 19, 134 (1976)CrossRefADSGoogle Scholar
  74. C. Sulem, P.L. Sulem, H. Frisch, J. Comput. Phys. 50, 138 (1983)CrossRefADSMathSciNetzbMATHGoogle Scholar
  75. P.A. Sweet, in Electromagnetic Phenomena in Cosmical Physics, ed. by B. Lehnert. IAU Symposium, vol. 6 (1958a), p. 123Google Scholar
  76. P.A. Sweet, II Nuovo Cimento 8(2), 188 (1958b)CrossRefMathSciNetGoogle Scholar
  77. S.I. Syrovatskii, Sov. J. Exp. Theor. Phys. 33, 933 (1971)ADSGoogle Scholar
  78. S.I. Syrovatskii, Sol. Phys. 58, 89 (1978)CrossRefADSGoogle Scholar
  79. S.I. Syrovatskii, Annu. Rev. Astron. Astrophys. 19, 163 (1981)CrossRefADSGoogle Scholar
  80. P. Tabeling, Phys. Rep. 362, 1 (2002)CrossRefADSMathSciNetzbMATHGoogle Scholar
  81. T. Tao (2015). arXiv:1402.0290 [math.AP]Google Scholar
  82. A. Tenerani, A.F. Rappazzo, M. Velli, F. Pucci, Astrophys. J. 801, 145 (2015)CrossRefADSGoogle Scholar
  83. A.A. van Ballegooijen, Astrophys. J. 298, 421 (1985)CrossRefADSGoogle Scholar
  84. A.A. van Ballegooijen, Astrophys. J. 311, 1001 (1986)CrossRefADSGoogle Scholar
  85. M. Wan, A.F. Rappazzo, W.H. Matthaeus, S. Servidio, S. Oughton, Astrophys. J. 797, 63 (2014)CrossRefADSGoogle Scholar
  86. A.L. Wilmot-Smith, D.I. Pontin, A.R. Yeates, G. Hornig, Astron. Astrophys. 536, A67 (2011)CrossRefADSGoogle Scholar
  87. M. Yamada, Space Sci. Rev. 160, 25 (2011)CrossRefADSGoogle Scholar
  88. M. Yamada, R. Kulsrud, H. Ji, Rev. Mod. Phys. 82, 603 (2010)CrossRefADSGoogle Scholar
  89. G.P. Zank, W.H. Matthaeus, J. Plasma Phys. 48, 85 (1992)CrossRefADSGoogle Scholar
  90. V. Zhdankin, D.A. Uzdensky, J.C. Perez, S. Boldyrev, Astrophys. J. 771, 124 (2013)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of ChicagoChicagoUSA
  2. 2.Advanced HeliophysicsPasadenaUSA

Personalised recommendations