International Workshop on Ambient Assisted Living

Ambient Assisted Living. ICT-based Solutions in Real Life Situations pp 164-175 | Cite as

High-Level Context Inference for Human Behavior Identification

  • Claudia Villalonga
  • Oresti Banos
  • Wajahat Ali Khan
  • Taqdir Ali
  • Muhammad Asif Razzaq
  • Sungyoung Lee
  • Hector Pomares
  • Ignacio Rojas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9455)


This work presents the Mining Minds Context Ontology, an ontology for the identification of human behavior. This ontology comprehensively models high-level context based on low-level information, including the user activities, locations, and emotions. The Mining Minds Context Ontology is the means to infer high-level context from the low-level information. High-level contexts can be inferred from unclassified contexts by reasoning on the Mining Minds Context Ontology. The Mining Minds Context Ontology is shown to be flexible enough to operate in real life scenarios in which emotion recognition systems may not always be available. Furthermore, it is demonstrated that the activity and the location might not be enough to detect some of the high-level contexts, and that the emotion enables a more accurate high-level context identification. This work paves the path for the future implementation of the high-level context recognition system in the Mining Minds project.


Context recognition Context inference Ontology Ontological reasoning Human behavior identification 



This work was supported by the Industrial Core Technology Development Program, funded by the Korean Ministry of Trade, Industry and Energy (MOTIE), under grant number #10049079.This work was also supported by the Junta de Andalucia Project P12-TIC-2082 and the grant “Movilidad Internacional de Jóvenes Investigadores de Programas de Doctorado Universidad de Granada y CEI BioTic”.


  1. 1.
    Jawbone Up (2015). (Accessed 14 September 2015)
  2. 2.
    Misfit Shine (2015). (Accessed 14 September 2015)
  3. 3.
    Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. Int. J. Ad Hoc Ubiquitous Comput. 2(4), 263–277 (2007)CrossRefGoogle Scholar
  4. 4.
    Banos, O., Bang, J.H., Hur, T.H., Siddiqui, M., Huynh-The, T., Vui, L.-B., Ali-Khan, W., Ali, T., Villalonga, C., Lee, S.: Mining human behavior for health promotion. In: Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2015) (2015)Google Scholar
  5. 5.
    Banos, O., Amin, M.B., Khan, W.A., Afzel, M., Ahmad, M., Ali, M., Ali, T., Ali, R., Bilal, M., Han, M., Hussain, J., Hussain, M., Hussain, S., Hur, T.H., Bang, J.H., Huynh-The, T., Idris, M., Kang, D.W., Park, S.B., Siddiqui, H., Vui, L.-B., Fahim, M., Khattak, A.M., Kang, B.H., Lee, S.: An innovative platform for person-centric health and wellness support. In: Ortuño, F., Rojas, I. (eds.) IWBBIO 2015, Part II. LNCS, vol. 9044, pp. 131–140. Springer, Heidelberg (2015) Google Scholar
  6. 6.
    Banos, O., Bilal-Amin, M., Ali-Khan, W., Afzel, M., Ali, T., Kang, B.-H., Lee, S.: The mining minds platform: a novel person-centered digital health and wellness framework. In: Proceedings of the 9th International Conference on Pervasive Computing Technologies for Healthcare (2015)Google Scholar
  7. 7.
    Banos, O., Damas, M., Pomares, H., Prieto, A., Rojas, I.: Daily living activity recognition based on statistical feature quality group selection. Expert Syst. Appl. 39(9), 8013–8021 (2012)CrossRefGoogle Scholar
  8. 8.
    Chen, H., Finin, T., Joshi, A.: An ontology for context-aware pervasive computing environments. Knowl. Eng. Rev. 18(03), 197–207 (2003)CrossRefGoogle Scholar
  9. 9.
    Chen, H., Finin, T., Joshi, A.: The soupa ontology for pervasive computing. In: Tamma, V., Cranefield, S., Finin, T.W., Willmott, S. (eds.) Ontologies for Agents: Theory and Experiences, pp. 233–258. Birkhäuser, Basel (2005) CrossRefGoogle Scholar
  10. 10.
    Datcu, D., Rothkrantz, L.: Semantic audio-visual data fusion for automatic emotion recognition. Emotion Recognition: A Pattern Analysis Approach, pp. 411–435 (2014)Google Scholar
  11. 11.
    Hervás, R., Bravo, J., Fontecha, J.: A context model based on ontological languages: a proposal for information visualization. J. UCS 16(12), 1539–1555 (2010)Google Scholar
  12. 12.
    Liao, L., Fox, D., Kautz, H.: Extracting places and activities from GPS traces using hierarchical conditional random fields. Int. J. Robot. Res. 26(1), 119–134 (2007)CrossRefGoogle Scholar
  13. 13.
    Lin, Q., Zhang, D., Huang, X., Ni, H., Zhou, X.: Detecting wandering behavior based on GPS traces for elders with dementia. In: 12th International Conference on Control Automation Robotics & Vision, pp. 672–677. IEEE (2012)Google Scholar
  14. 14.
    Mannini, A., Intille, S.S., Rosenberger, M., Sabatini, A.M., Haskell, W.: Activity recognition using a single accelerometer placed at the wrist or ankle. Med. Sci. Sports Exerc. 45(11), 2193–2203 (2013)CrossRefGoogle Scholar
  15. 15.
    Poveda Villalon, M., Suárez-Figueroa, M.C., García-Castro, R., Gómez-Pérez, A.: A context ontology for mobile environments. In: Proceedings of Workshop on Context, Information and Ontologies, CEUR-WS (2010)Google Scholar
  16. 16.
    Preuveneers, D., et al.: Towards an extensible context ontology for ambient intelligence. In: Markopoulos, P., Eggen, B., Aarts, E., Crowley, J.L. (eds.) EUSAI 2004. LNCS, vol. 3295, pp. 148–159. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  17. 17.
    Ribeiro, P., Santos-Victor, J.: Human activity recognition from video: modeling, feature selection and classification architecture. In: Proceedings of International Workshop on Human Activity Recognition and Modelling, pp. 61–78. Citeseer (2005)Google Scholar
  18. 18.
    Riboni, D., Bettini, C.: COSAR: hybrid reasoning for context-aware activity recognition. Pers. Ubiquit. Comput. 15(3), 271–289 (2011)CrossRefGoogle Scholar
  19. 19.
    Mohsin Saleemi, M., Díaz Rodríguez, N., Lilius, J., Porres, I.: A framework for context-aware applications for smart spaces. In: Balandin, S., Koucheryavy, Y., Hu, H. (eds.) NEW2AN 2011 and ruSMART 2011. LNCS, vol. 6869, pp. 14–25. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  20. 20.
    Wang, X.H., Zhang, D.Q., Gu, T., Pung, H.K.: Ontology based context modeling and reasoning using owl. In: Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications Workshops, pp. 18–22. IEEE (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Claudia Villalonga
    • 1
    • 2
  • Oresti Banos
    • 1
  • Wajahat Ali Khan
    • 1
  • Taqdir Ali
    • 1
  • Muhammad Asif Razzaq
    • 1
  • Sungyoung Lee
    • 1
  • Hector Pomares
    • 2
  • Ignacio Rojas
    • 2
  1. 1.Department of Computer EngineeringKyung Hee UniversityYonginKorea
  2. 2.Research Center for Information and Communications Technologies of the University of GranadaGranadaSpain

Personalised recommendations