Visual Exploration of Urban Dynamics Using Mobile Data

  • Eduardo Graells-GarridoEmail author
  • José García
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9454)


In this paper we present methods to model citizen movement according to mobile network connectivity, and a set of visualization widgets to display and analyze the results of those methods. In particular, citizen movement is analyzed in terms of Origin/Destiny trips in workable days, as well as classification of city areas into dormitory, non-dormitory, and mixed. We demonstrate our proposal with a case study of the city of Santiago, Chile, and briefly discuss our results in terms of the design of Ambient Intelligence and Urban Design applications.


Geographical Context Home Location Ambient Intelligence Metro Station Public Transport System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bostock, M., Ogievetsky, V., Heer, J.: D3 data-driven documents. IEEE Trans. Visual Comput. Graphics 17(12), 2301–2309 (2011)CrossRefGoogle Scholar
  2. 2.
    Cuttone, A., Lehmann, S., Larsen, J.E.: Inferring human mobility from sparse low accuracy mobile sensing data. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, pp. 995–1004. ACM (2014)Google Scholar
  3. 3.
    Dork, M., Carpendale, S., Collins, C., Williamson, C.: Visgets: coordinated visualizations for web-based information exploration and discovery. IEEE Trans. Visual. Comput. Graphics 14(6), 1205–1212 (2008)CrossRefGoogle Scholar
  4. 4.
    Heer, J., Robertson, G.G.: Animated transitions in statistical data graphics. IEEE Trans. Visual. Comput. Graphics 13(6), 1240–1247 (2007)CrossRefGoogle Scholar
  5. 5.
    Holten, D., Van Wijk, J.J.: Force-directed edge bundling for graph visualization. In: Computer Graphics Forum, vol. 28. 3, pp. 983–990. Wiley Online Library (2009)Google Scholar
  6. 6.
    Munizaga, M., Devillaine, F., Navarrete, C., Silva, D.: Validating travel behavior estimated from smartcard data. Transp. Res. Part C Emerg. Technol. 44, 70–79 (2014)CrossRefGoogle Scholar
  7. 7.
    Muñoz, J.C., Gschwender, A.: Transantiago: a tale of two cities. Res. Transp. Econ. 22(1), 45–53 (2008)CrossRefGoogle Scholar
  8. 8.
    Oougenik, A.J., Niemeyer, D.R.: An algorithm to construct continuous area cartograms. Prof. Geogr. 37(1), 75–81 (1985)CrossRefGoogle Scholar
  9. 9.
    Pérez, F., Granger, B.E.: IPython: a system for interactive scientific computing. Comput. Sci. Eng. 9(3), 21–29 (2007)CrossRefGoogle Scholar
  10. 10.
    Salnikov, V., Schien, D., Youn, H., Lambiotte, R., Gastner, M.T.: The geography and carbon footprint of mobile phone use in Cote d’Ivoire. EPJ Data Sci. 3(1), 1–15 (2014)CrossRefGoogle Scholar
  11. 11.
    Shen, H., et al.: Interactive notebooks: sharing the code. Nature 515(7525), 151–152 (2014)CrossRefGoogle Scholar
  12. 12.
    Ward Jr., J.H.: Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58(301), 236–244 (1963)CrossRefGoogle Scholar
  13. 13.
    Xiao, L., Yeh, R., Hanrahan, P.: Flow map layout. In: IEEE Symposium on Information Visualization INFOVIS 2005, pp. 219–224. IEEE (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Telefónica I+DSantiagoChile

Personalised recommendations