International Conference on Ubiquitous Computing and Ambient Intelligence

Ubiquitous Computing and Ambient Intelligence. Sensing, Processing, and Using Environmental Information pp 375-386 | Cite as

A Lightweight Distributed Architecture to Integrate Fuzzy Relevant Objects in Real-Time Environments

  • Javier Medina
  • Francisco Javier Quesada
  • Macarena Espinilla
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9454)

Abstract

The development of intelligent environments from scratch means an arduous and complex process. In these environments, the integration of sensors and the design of processing information in real time are key aspects in order to generate feasible solutions. To shed light on this context, in this contribution, we present an architecture for information processing based on object distribution services. The capture and processing of data are developed ubiquitously within mobile devices and ambient computers by means of peer to peer based on fuzzy temporal subscriptions. The main advantage of the use of fuzzy temporal subscriptions is that the information is received by a subscriber when it reaches a desired level of relevance for this subscriber, implying a decrease in the communication burden in the architecture. In order to illustrate the usefulness and effectiveness of our proposal, a scene of an user performing an activity in an intelligent environment is described by means of his interactions with the environmental objects and the identification of users by marker-based tracking.

Keywords

Intelligent environments Ambient middleware Object distribution services Real-time processing Marker-based tracking 

References

  1. 1.
    Balan, R.K., Satyanarayanan, M., Park, S.Y., Okoshi, T.: Tactics-based remote execution for mobile computing. In: Proceedings of the 1st International Conference on Mobile Systems, Applications and Services, pp. 273–286. ACM, May 2003Google Scholar
  2. 2.
    Botts, M., Robin, A.: OpenGIS sensor model language (SensorML) implementation specification. OpenGIS Implementation Specification OGC, 07–000 (2007)Google Scholar
  3. 3.
    Castro, J.L., Delgado, M., Medina, J., Ruiz-Lozano, M.D.: Intelligent surveillance system with integration of heterogeneous information for intrusion detection. Expert Syst. Appl. 38(9), 11182–11192 (2011)CrossRefGoogle Scholar
  4. 4.
    Compton, M., Barnaghi, P., Bermudez, L., Garcia-Castro, R., Corcho, O., Cox, S., Taylor, K.: The SSN ontology of the W3C semantic sensor network incubator group. Web Semant. Sci. Serv. Agents. World Wide Web 17, 25–32 (2012)CrossRefGoogle Scholar
  5. 5.
    De, S., Nandi, S., Goswami, D.: Tuple space enhancements for mobile middleware. Int. J. Commun. Netw. Distrib. Syst. 12(3), 299–326 (2014)CrossRefGoogle Scholar
  6. 6.
    Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Marín-Jiménez, M.J.: Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recogn. 47(6), 2280–2292 (2014)CrossRefGoogle Scholar
  7. 7.
    Gomez-Romero, J., Patricio, M.A., García, J., Molina, J.M.: Ontology-based context representation and reasoning for object tracking and scene interpretation in video. Expert Syst. Appl. 38(6), 7494–7510 (2011)CrossRefGoogle Scholar
  8. 8.
    Neuhaus, H., Compton, M.: The semantic sensor network ontology. In: AGILE Workshop on Challenges in Geospatial Data Harmonisation, Hannover, Germany, pp. 1–33 (2009)Google Scholar
  9. 9.
    Perera, C., Zaslavsky, A., Christen, P., Salehi, A., Georgakopoulos, D.: Connecting mobile things to global sensor network middleware using system-generated wrappers. In: Proceedings of the Eleventh ACM International Workshop on Data Engineering for Wireless and Mobile Access, pp. 23–30. ACM, May 2012Google Scholar
  10. 10.
    Haefner, K.: Evolution of Information Processing Systems: An Interdisciplinary Approach for a New Understanding of Nature and Society. Springer, Heidelberg (2011)Google Scholar
  11. 11.
    Henning, M.: A new approach to object-oriented middleware. IEEE Internet Comput. 8(1), 66–75 (2004)CrossRefGoogle Scholar
  12. 12.
    Henning, M., Spruiell, M.: Choosing middleware: why performance and scalability do (and do not) matter, 1 September 2009. http://www.zeroc.com/articles/IcePerformanceWhitePaper.pdf
  13. 13.
    Kortuem, G., Kawsar, F., Fitton, D., Sundramoorthy, V.: Smart objects as building blocks for the internet of things. IEEE Internet Comput. 14(1), 44–51 (2010)CrossRefGoogle Scholar
  14. 14.
    Kifer, D., Ben-David, S., Gehrke, J.: Detecting change in data streams. In: Proceedings of the Thirtieth international conference on Very Large Data Bases (VLDB Endowment), vol. 30, pp. 180–191, August 2004Google Scholar
  15. 15.
    Le-Phuoc, D., Nguyen-Mau, H.Q., Parreira, J.X., Hauswirth, M.: A middleware framework for scalable management of linked streams. Web Semant. Sci. Serv. Agents. World Wide Web 16, 42–51 (2012)CrossRefGoogle Scholar
  16. 16.
    Liu, H., Jacobsen, H.A.: A-ToPSS: a publish/subscribe system supporting imperfect information processing. Proceedings of the Thirtieth International Conference on Very large Data Bases (VLDB Endowment), vol. 30, pp. 1281–1284, August 2004Google Scholar
  17. 17.
    Liu, G.: Distributing network services and resources in a mobile communications network. US Patent No. 5,825,759. US Patent and Trademark Office, Washington, DC (1998)Google Scholar
  18. 18.
    Ma, Z.: Fuzzy Database Modeling of Imprecise and Uncertain Engineering Information. Springer, Heidelberg (2006)MATHGoogle Scholar
  19. 19.
    Picco, G.P., Balzarotti, D., Costa, P.: Lights: a lightweight, customizable tuple space supporting context-aware applications. In Proceedings of the 2005 ACM Symposium on Applied Computing, pp. 413–419. ACM, March 2005Google Scholar
  20. 20.
    Pripužić, K., Žarko, I.P., Aberer, K.: Top-k/w publish/subscribe: a publish/subscribe model for continuous top-k processing over data streams. Inf. Syst. 39, 256–276 (2014)CrossRefGoogle Scholar
  21. 21.
    Marie, Pierrick, Desprats, Thierry, Chabridon, Sophie, Sibilla, Michelle: Extending Ambient Intelligence to the Internet of Things: New Challenges for QoC Management. In: Hervás, Ramón, Lee, Sungyoung, Nugent, Chris, Bravo, José (eds.) UCAmI 2014. LNCS, vol. 8867, pp. 224–231. Springer, Heidelberg (2014) Google Scholar
  22. 22.
    Nadkarni, P.: The EAV/CR model of data representation. Technical report, Center for Medical Informatics, Yale University School of Medicine (2000)Google Scholar
  23. 23.
    Kopetz, H.: Internet of things. In: Kopetz, H. (ed.) Real-Time Systems, pp. 307–323. Springer, New York (2011)CrossRefGoogle Scholar
  24. 24.
    Rodríguez, N.D., Cuéllar, M.P., Lilius, J., Calvo-Flores, M.D.: A fuzzy ontology for semantic modelling and recognition of human behaviour. Knowl.-Based Syst. 66, 46–60 (2014)CrossRefGoogle Scholar
  25. 25.
    Roggen, D., Lukowicz, P., Ferscha, A., Millán, J.D.R., Tröster, G., Chavarriaga, R.: Opportunistic human activity and context recognition. Computer 46, 36–45 (2013). IEEE Computer Society (EPFL-ARTICLE-182084)Google Scholar
  26. 26.
    Salehi, A.: Design and implementation of an efficient data stream processing system. Doctoral dissertation, École Polytechnique Féd’erale de Lausanne (2010)Google Scholar
  27. 27.
    Verissimo, P., Rodrigues, L.: Distributed Systems for System Architects, vol. 1. Springer Science & Business Media, New York (2012)Google Scholar
  28. 28.
    Villanueva, F.J., Villa, D., Moya, F., Barba, J., Rincón, F., Lopez, J.C.: Leightweight middleware for seamless HW-SW interoperability, with application to wireless sensor networks. In: Design, Automation & Test in Europe Conference & Exhibition (DATE 2007), pp. 1–6. IEEE, April 2007Google Scholar
  29. 29.
    Weiser, M.: The computer for the 21st century. Sci. Am. 265(3), 94–104 (1991)CrossRefGoogle Scholar
  30. 30.
    Zelkha, E., Epstein, B., Birrell, S., Dodsworth, C.: From devices to ambient intelligence. In: Digital Living Room Conference, vol. 6, June 1998Google Scholar
  31. 31.
    Zadeh, L.A.: Fuzzy sets. Inf. control 8(3), 338–353 (1965)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Javier Medina
    • 1
  • Francisco Javier Quesada
    • 1
  • Macarena Espinilla
    • 1
  1. 1.Department of Computer ScienceUniversity of JaenJaenSpain

Personalised recommendations