Advertisement

LaGeR Workbench:

A Language and Framework for the Representation and Implementation of Device-Agnostic Gestural Interactions in 2D and 3D
  • Erick Mata-Montero
  • Andrés Odio-ViviEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9454)

Abstract

The recent rise of virtual and augmented reality applications, ambient intelligence, as well as video games have encouraged the proliferation of gestural input devices such as the Razer Hydra, Leap Motion Controller, and Kinect 3D. Because these devices do not relay data in a standard format, application developers are forced to use a different Application Programming Interface (API) for each device.

The main objective of this research was to define and implement LaGeR (Language for Gesture Representation), a language for the representation and interpretation of two and three dimensional device-agnostic gestures. Through LaGeR, developers can define gestures that will then be processed regardless of the device and the APIs involved. To ease the use of LaGeR, a LaGeR Workbench was developed as a set of tools and software libraries to convert gestures into LaGeR strings, recognize those strings as gestures, visualize the originating gestures in 3D, and communicate those detections to subscribing programs. In addition, LaGeR’s effectiveness was validated through experiments in which LaGeR Workbench was used to give users control of representative functionality of the Google Chrome web browser by using two-hand gestures with a Razer Hydra device. LaGeR was found to be simple yet expressive enough to represent gestures and develop gesture-based device-agnostic applications.

Keywords

Pointing devices Virtual reality Gestural input Regular languages Publish-subscribe/event-based architectures 

References

  1. 1.
    Bai, X., Yang, X., Yu, D., Latecki, L.J.: Skeleton-based shape classification using path similarity. Int. J. Pattern Recogn. Artif. Intell. 22(04), 733–746 (2008). http://knight.cis.temple.edu/~latecki/Papers/IJPRAI08.pdf CrossRefGoogle Scholar
  2. 2.
    Bard, G.V.: Spelling-error tolerant, order-independent pass-phrases via the damerau-levenshtein string-edit distance metric. In: Proceedings of the Fifth Australasian Symposium on ACSW Frontiers (2007). http://crpit.com/confpapers/CRPITV68Bard.pdf
  3. 3.
    Casiez, G., Roussel, N., Vogel, D.: 1€ filter: a simple speed-based low-pass filter for noisy input in interactive systems. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (2012). doi: 10.1145/2207676.2208639
  4. 4.
    Chen, Q., Georganas, N.D., Petriu, E.M.: Hand gesture recognition using haar-like features and a stochastic context-free grammar. IEEE Trans. Instrum. Measur. 57(8), 1562–1571 (2008). http://www.discover.uottawa.ca/~qchen/my_papers/I5CM_published.pdf CrossRefGoogle Scholar
  5. 5.
    Han, C.Y., Everding, B., Wee, W.G.: Graph matching for object recognition and recovery. Pattern Recogn. 37(7), 1557–1560 (2004). http://www.cipprs.org/papers/VI/VI2003/papers/S8/S8_he_132.pdf CrossRefGoogle Scholar
  6. 6.
    Lee, J., Cakmak, M., DePalma, N.: Gesture recognition with temporally local to global representations. Atlantic 1–6 (2008). Accessed http://www.mendeley.com/download/public/2829371/3769593392/fde19992241d33f9d577e01abba7b1eb96b7c213/dl.pdf
  7. 7.
    Lu, H., Fogarty, J., Li, Y.: Gesture script: recognizing gestures and their structure using rendering scripts and interactively trained parts. In: CHI 2014, Toronto, Ontario, Canada (2014). Accessed http://yangl.org/pdf/gscript.pdf
  8. 8.
    Majorek, K.A., Steczkiewicz, K., Muszewska, A., et al.: The RNase h-like superfamily: new members, comparative structural analysis and evolutionary classification. Nucleic Acids Research 42(7), 4160–4179 (2014). Accessed http://nar.oxfordjournals.org/content/42/7/4160.long CrossRefGoogle Scholar
  9. 9.
    Mitra, S., Acharya, T.: Gesture recognition: a survey. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 37(3), 311–324 (2007). Accessed http://www.cs.nccu.edu.tw/whliao/hcie2007/gesture_recognition.pdf CrossRefGoogle Scholar
  10. 10.
    Odio, A.: LaGeR: Lenguaje para descripción de gestos bidimensionales y tridimensionales. Master’s thesis, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica (2015)Google Scholar
  11. 11.
    Taylor II, R.M., Yang, R., Weber, H., Hudson, T.: Virtual reality peripheral network (2014). Accessed http://www.cs.unc.edu/Research/vrpn/
  12. 12.
    Webb, R.: Stella: polyhedron navigator (2015). Accessed http://www.software3d.com/Stella.php
  13. 13.
    Wikipedia (s.f.): Rhombicuboctahedron. In Wikipedia (2015). Accessed https://en.wikipedia.org/wiki/Rhombicuboctahedron
  14. 14.
    Wikipedia (s.f.): Spherical coordinate system. In Wikipedia (2015). Accessed http://en.wikipedia.org/wiki/Spherical_coordinate_system

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Escuela de Ingeniería en ComputaciónInstituto Tecnológico de Costa RicaCartagoCosta Rica

Personalised recommendations