Advertisement

Comparative Analysis of Artificial Hydrocarbon Networks and Data-Driven Approaches for Human Activity Recognition

  • Hiram PonceEmail author
  • María de Lourdes Martínez-Villaseñor
  • Luis Miralles-Pechúan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9454)

Abstract

In recent years computing and sensing technologies advances contribute to develop effective human activity recognition systems. In context-aware and ambient assistive living applications, classification of body postures and movements, aids in the development of health systems that improve the quality of life of the disabled and the elderly. In this paper we describe a comparative analysis of data-driven activity recognition techniques against a novel supervised learning technique called artificial hydrocarbon networks (AHN). We prove that artificial hydrocarbon networks are suitable for efficient body postures and movements classification, providing a comparison between its performance and other well-known supervised learning methods.

Keywords

Human activity recognition Artificial organic networks Artificial hydrocarbon networks Wearable sensors Supervised learning Classification 

References

  1. 1.
    Chen, L., Hoey, J., Nugent, C.D., Cook, D.J., Yu, Z.: Sensor-based activity recognition. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42(6), 790–808 (2012). doi: 10.1109/TSMCC.2012.2198883 CrossRefGoogle Scholar
  2. 2.
    Ugulino, W., Cardador, D., Vega, K., Velloso, E., Milidiú, R., Fuks, H.: Wearable computing: accelerometers’ data classification of body postures and movements. In: Barros, L.N., Finger, M., Pozo, A.T., Gimenénez-Lugo, G.A., Castilho, M. (eds.) SBIA 2012. LNCS, vol. 7589, pp. 52–61. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Reyes, J.L.: Smartphone-Based Human Activity Recognition. Springer Theses. Springer, Cham (2015). ISBN 978-3-319-14273-9 (Print) 978-3-319-14274-6 (Online)Google Scholar
  4. 4.
    Ponce, H., Ponce, P., Molina, A.: Artificial Organic Networks: Artificial Intelligence Based on Carbon Networks. Studies in Computational Intelligence, vol. 521. Springer, Cham (2014)CrossRefGoogle Scholar
  5. 5.
    Ponce, H., Ponce, P., Molina, A.: Adaptive noise filtering based on artificial hydrocarbon networks: an application to audio signals. Expert Syst. Appl. 41(14), 6512–6523 (2014)CrossRefGoogle Scholar
  6. 6.
    Molina, A., Ponce, H., Ponce, P., Tello, G., Ramirez, M.: Artificial hydrocarbon networks fuzzy inference systems for CNC machines position controller. Int. J. Adv. Manuf. Technol. 72(9–12), 1465–1479 (2014)CrossRefGoogle Scholar
  7. 7.
    Ponce, H., Ponce, P.: Artificial organic networks. In: Proceedings of IEEE Conference on Electronics, Robotics, and Automotive Mechanics, pp. 29–34 (2011)Google Scholar
  8. 8.
    Mozer, M.C.: The neural network house: an environment that adapts to its inhabitants. In: Proceedings of the AAAI Spring Symposium on Intelligent Environments, pp. 110–114 (1998)Google Scholar
  9. 9.
    Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Pantelopoulos, A., Boubakis, N.: A survey on wearable systems for monitoring and early diagnosis for the elderly. IEEE Trans. Syst. Man Cybern. Part C 40(1), 1–12 (2010)CrossRefGoogle Scholar
  11. 11.
    Acampora, G., Cook, D.J., Rashidi, P., Vasilakos, A.V.: A survey on ambient intelligence in healthcare. Proc. IEEE 101(12), 2470–2494 (2013). doi: 10.1109/JPROC.2013.2262913 CrossRefGoogle Scholar
  12. 12.
    Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Lichman, M.: UCI Machine Learning Repository. School of Information and Computer Science, University of California, Irvine, CA (2013). http://archive.ics.uci.edu/ml
  14. 14.
    Granitto, P.M., Furlanello, C., Biasioli, F., Gasperi, F.: Recursive feature elimination with random forest for PTR-MS analysis of agroindustrial products. Chemometr. Intell. Lab. Syst. 83(2), 83–90 (2006)CrossRefGoogle Scholar
  15. 15.
    Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–127 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Liu, H., Motoda, H.: Feature Selection for Knowledge Discovery and Data Mining, vol. 454. Springer, New York (2012)Google Scholar
  17. 17.
    Lara, O.D., Labrador, M.A.: A survey on human activity recognition using wearable sensors. IEEE Trans. Commun. Surv. Tutorials 15(3), 1192–1209 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Hiram Ponce
    • 1
    Email author
  • María de Lourdes Martínez-Villaseñor
    • 1
  • Luis Miralles-Pechúan
    • 1
  1. 1.Universidad Panamericana Campus MéxicoMexico, D.F.Mexico

Personalised recommendations