Australasian Joint Conference on Artificial Intelligence

AI 2015: Advances in Artificial Intelligence pp 609-622 | Cite as

Absorption for ABoxes and TBoxes with General Value Restrictions

  • Jiewen Wu
  • Taras Kinash
  • David Toman
  • Grant Weddell
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9457)

Abstract

We consider the instance checking problem for \(\mathcal {SHIQ(\mathbf {D})}\) knowledge bases. In particular, we present a procedure that significantly reduces the number of ABox individuals that need to be examined for a given instance checking problem over a consistent \(\mathcal {SHIQ(\mathbf {D})}\) knowledge base that contains arbitrary occurrences of value restrictions. The procedure extends earlier work that assumed value restrictions were predominantly used to establish global domain and range restrictions, and, consequently, in which other applications of value restrictions had a significant risk of requiring an infeasible number of individuals to be examined for a given problem. Finally, experimental results are given that validate the effectiveness of the procedure.

References

  1. 1.
    Dolby, J., Fokoue, A., Kalyanpur, A., Kershenbaum, A., Schonberg, E., Srinivas, K., Ma, L.: Scalable semantic retrieval through summarization and refinement. In: AAAI 2007, pp. 299–304 (2007)Google Scholar
  2. 2.
    Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for OWL knowledge base systems. Web Semant. 3(2–3), 158–182 (2005)CrossRefGoogle Scholar
  3. 3.
    Haarslev, V., Möller, R.: On the scalability of description logic instance retrieval. J. Autom. Reasoning (JAR) 41(2), 99–142 (2008)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Horrocks, I.: Optimising tableaux decision procedures for description logics. Ph.D. thesis, the University of Manchester (1997)Google Scholar
  5. 5.
    Horrocks, I., Sattler, U.: Optimised reasoning for \({\cal SHIQ}\). In: ECAI 2002, pp. 277–281 (2002)Google Scholar
  6. 6.
    Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for expressive description logics. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS, vol. 1705, pp. 161–180. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  7. 7.
    Hudek, A.K., Weddell, G.E.: Binary absorption in tableaux-based reasoning for description logics. In: Description Logics 2006 (2006)Google Scholar
  8. 8.
    Kollia, I., Glimm, B.: Cost based query ordering over OWL ontologies. In: Cudré-Mauroux, P., Heflin, J., Sirin, E., Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J.X., Hendler, J., Schreiber, G., Bernstein, A., Blomqvist, E. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 231–246. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  9. 9.
    Pound, J., Toman, D., Weddell, G.E., Wu, J.: An assertion retrieval algebra for object queries over knowledge bases. In: Walsh, T. (ed.) IJCAI 2011, pp. 1051–1056 (2011)Google Scholar
  10. 10.
    Wandelt, S., Möller, R.: Towards ABox modularization of semi-expressive description logics. Appl. Ontology 7(2), 133–167 (2012)Google Scholar
  11. 11.
    Wu, J.: Answering object queries over knowledge bases with expressive underlying description logics. Ph.D. thesis, University of Waterloo (2013)Google Scholar
  12. 12.
    Jiewen, W., Hudek, A., Toman, D., Weddell, G.: Absorption for ABoxes. J. Autom. Reasoning 53, 215–243 (2014)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Wu, J., Hudek, A.K., Toman, D., Weddell, G.E.: Absorption for ABoxes. In: DL 2012 (2012)Google Scholar
  14. 14.
    Wu, J., Hudek, A.K., Toman, D., Weddell, G.E.: Assertion absorption in object queries over knowledge bases. In: KR 2012 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jiewen Wu
    • 1
  • Taras Kinash
    • 1
  • David Toman
    • 1
  • Grant Weddell
    • 1
  1. 1.Cheriton School of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations