Australasian Joint Conference on Artificial Intelligence

AI 2015: Advances in Artificial Intelligence pp 457-463 | Cite as

Stream-Query Compilation with Ontologies

  • Özgür Lütfü Özçep
  • Ralf Möller
  • Christian Neuenstadt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9457)

Abstract

Rational agents perceiving data from a dynamic environment and acting in it have to be equipped with capabilities such as decision making, planning etc. We assume that these capabilities are based on query answering with respect to (high-level) streams of symbolic descriptions, which are grounded in (low-level) data streams. Queries need to be answered w.r.t. an ontology. The central idea is to compile ontology-based stream queries (continuous or historical) to relational data processing technology, for which efficient implementations are available. We motivate our query language STARQL (Streaming and Temporal ontology Access with a Reasoning-Based Query Language) with a sensor data processing scenario, and compare the approach realized in the STARQL framework with related approaches regarding expressivity.

Keywords

Stream Rewriting Ontology Description logic 

References

  1. 1.
    Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic foundations and query execution. VLDB J. 15, 121–142 (2006)CrossRefGoogle Scholar
  2. 2.
    Artale, A., Kontchakov, R., Wolter, F., Zakharyaschev, M.: Temporal description logic for ontology-based data access. In: IJCAI 2013, pp. 711–717 (2013)Google Scholar
  3. 3.
    Avron, A.: Constructibility and decidability versus domain independence and absoluteness. Theor. Comput. Sci. 394(3), 144–158 (2008)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Baader, F., Bauer, A., Baumgartner, P., Cregan, A., Gabaldon, A., Ji, K., Lee, K., Rajaratnam, D., Schwitter, R.: A novel architecture for situation awareness systems. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 77–92. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  5. 5.
    Baader, F., Borgwardt, S., Lippmann, M.: Temporalizing ontology-based data access. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 330–344. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  6. 6.
    Borgwardt, S., Lippmann, M., Thost, V.: Temporal query answering in the description logic DL-lite. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS, vol. 8152, pp. 165–180. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  7. 7.
    Calbimonte, J.P., Jeung, H., Corcho, O., Aberer, K.: Enabling query technologies for the semantic sensor web. Int. J. Semant. Web Inf. Syst. 8(1), 43–63 (2012)CrossRefGoogle Scholar
  8. 8.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro, M., Rosati, R.: Ontologies and databases: the DL-lite approach. In: Tessaris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-C., Schmidt, R.A. (eds.) Reasoning Web. LNCS, vol. 5689, pp. 255–356. Springer, Heidelberg (2009) Google Scholar
  9. 9.
    Della Valle, E., Ceri, S., Barbieri, D.F., Braga, D., Campi, A.: A first step towards stream reasoning. In: Domingue, J., Fensel, D., Traverso, P. (eds.) FIS 2008. LNCS, vol. 5468, pp. 72–81. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  10. 10.
    Heintz, F., Kvarnström, J., Doherty, P.: Bridging the sense-reasoning gap: Dyknow - stream-based middleware for knowledge processing. Adv. Eng. Inform. 24(1), 14–26 (2010)CrossRefGoogle Scholar
  11. 11.
    Özçep, Ö.L., Möller, R., Neuenstadt, C.: A stream-temporal query language for ontology based data access. In: Lutz, C., Thielscher, M. (eds.) KI 2014. LNCS, vol. 8736, pp. 183–194. Springer, Heidelberg (2014) Google Scholar
  12. 12.
    Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth, M.: A Native and adaptive approach for unified processing of linked streams and linked data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 370–388. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  13. 13.
    Russell, S.J., Norvig, P.: Artificial Intelligence - A Modern Approach. Prentice Hall, Egnlewood Cliffs (1995) MATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Özgür Lütfü Özçep
    • 1
  • Ralf Möller
    • 1
  • Christian Neuenstadt
    • 1
  1. 1.Institute of Information Systems (IFIS)University of LübeckLübeckGermany

Personalised recommendations