Advertisement

Automating Marine Mammal Detection in Aerial Images Captured During Wildlife Surveys: A Deep Learning Approach

  • Frederic MaireEmail author
  • Luis Mejias Alvarez
  • Amanda Hodgson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9457)

Abstract

Aerial surveys conducted using manned or unmanned aircraft with customized camera payloads can generate a large number of images. Manual review of these images to extract data is prohibitive in terms of time and financial resources, thus providing strong incentive to automate this process using computer vision systems. There are potential applications for these automated systems in areas such as surveillance and monitoring, precision agriculture, law enforcement, asset inspection, and wildlife assessment. In this paper, we present an efficient machine learning system for automating the detection of marine species in aerial imagery. The effectiveness of our approach can be credited to the combination of a well-suited region proposal method and the use of Deep Convolutional Neural Networks (DCNNs). In comparison to previous algorithms designed for the same purpose, we have been able to dramatically improve recall to more than 80 % and improve precision to 27 % by using DCNNs as the core approach.

References

  1. 1.
    Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)CrossRefGoogle Scholar
  2. 2.
    Alexe, B., Deselaers, T., Ferrari, V.: Measuring the objectness of image windows. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2189–2202 (2012)CrossRefGoogle Scholar
  3. 3.
    Arbelaez, P., Pont-Tuset, J., Barron, J., Marques, F., Malik, J.: Multiscale combinatorial grouping. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition CVPR, pp. 328–335. IEEE (2014)Google Scholar
  4. 4.
    Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-Farley, D., Bengio, Y.: Theano: a CPU and GPU math expression compiler. In: Proceedings of the Python for Scientific Computing Conference (SciPy) (2010)Google Scholar
  5. 5.
    Calverley, P.M., Downs, C.T.: Habitat use by nile crocodiles in ndumo game reserve, south africa: a naturally patchy environment. Herpetologica 70(4), 426–438 (2014)CrossRefGoogle Scholar
  6. 6.
    Carreira, J., Sminchisescu, C.: Constrained parametric min-cuts for automatic object segmentation. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition CVPR, pp. 3241–3248. IEEE (2010)Google Scholar
  7. 7.
    Conn, P.B., Ver Hoef, J.M., McClintock, B.T., Moreland, E.E., London, J.M., Cameron, M.F., Dahle, S.P., Boveng, P.L.: Estimating multispecies abundance using automated detection systems: ice-associated seals in the bering sea. Methods Ecol. Evol. 5(12(Sp. Iss. SI)), 1280–1293 (2014)CrossRefGoogle Scholar
  8. 8.
    Endres, I., Hoiem, D.: Category independent object proposals. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 575–588. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  9. 9.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59(2), 167–181 (2004)CrossRefGoogle Scholar
  10. 10.
    Goodfellow, I.J., Warde-Farley, D., Lamblin, P., Dumoulin, V., Mirza, M., Pascanu, R., Bergstra, J., Bastien, F., Bengio, Y.: Pylearn2: A Machine Learning Research Library. ArXiv e-prints, August 2013Google Scholar
  11. 11.
    Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y.: Maxout networks. arXiv preprint (2013). arXiv:1302.4389
  12. 12.
    Groom, G., Stjernholm, M., Nielsen, R.D., Fleetwood, A., Petersen, I.K.: Remote sensing image data and automated analysis to describe marine bird distributions and abundances. Ecological Informatics 14, 2–8 (2013)CrossRefGoogle Scholar
  13. 13.
    Hodgson, A., Kelly, N., Peel, D.: Unmanned aerial vehicles (uavs) for surveying marine fauna: a dugong case study. PLoS ONE 8(11), e79556 (2013)CrossRefGoogle Scholar
  14. 14.
    Koski, W.R., Thomas, T.A., Funk, D.W., Macrander, A.M.: Marine mammal sightings by analysts of digital imagery versus aerial surveyors: a preliminary comparison. J. Unmanned Veh. Syst. 01(01), 25–40 (2013)CrossRefGoogle Scholar
  15. 15.
    Maire, F., Mejias, L., Hodgson, A.: A convolutional neural network for automatic analysis of aerial imagery. In: Wang, L., Ogunbona, P., Li, W., (eds.) Digital Image Computing: Techniques and Applications (DICTA 2014), Wollongong, New South Wales, Australia (2014)Google Scholar
  16. 16.
    Michaud, J.-S., Coops, N.C., Andrew, M.E., Wulder, M.A., Brown, G.S., Rickbeil, G.J.M.: Estimating moose (alces alces) occurrence and abundance from remotely derived environmental indicators. Remote Sens. Environ. 152, 190–201 (2014)CrossRefGoogle Scholar
  17. 17.
    Podobna, Y., Schoonmaker, J., Boucher, C., Oakley, D.: Optical detection of marine mammals. In: Proceedings SPIE 7317, Ocean Sensing and Monitoring, vol. 7317 (2009)Google Scholar
  18. 18.
    Podobna, Y., Sofianos, J., Schoonmaker, J., Medeiros, D., Boucher, C., Oakley, D., Saggese, S.: Airborne multispectral detecting system for marine mammals survey. In: Proceedings SPIE 7678, Ocean Sensing and Monitoring II, 76780G, 20 April 2010Google Scholar
  19. 19.
    Rekdal, S.L., Hansen, R.G., Borchers, D., Bachmann, L., Laidre, K.L., Wiig, O., Nielsen, N.H., Fossette, S., Tervo, O., Heide-Jorgensen, M.P.: Trends in bowhead whales in west greenland: Aerial surveys vs. genetic capture-recapture analyses. Mar. Mammal Sci. 31(1), 133–154 (2015)CrossRefGoogle Scholar
  20. 20.
    Schoonmaker, J., Podobna, Y., Boucher, C., Sofianos, J., Oakley, D., Medeiros, D., Lopez, J.: The utility of automated electro-optical systems for measuring marine mammal densities. In: OCEANS 2010, pp. 1–6 (2010)Google Scholar
  21. 21.
    Schoonmaker, J., Wells, T., Gilbert, G., Podobna, Y., Petrosyuk, I., Dirbas, J.: Spectral detection and monitoring of marine mammals. In: SPIE 6946, Airborne Intelligence, Surveillance, Reconnaissance (ISR) Systems and Applications V, 694606 (2008)Google Scholar
  22. 22.
    Uijlings, J.R.R., van de Sande, K.E.A., Gevers, T., Smeulders, A.W.M.: Selective search for object recognition. Int. J. Comput. Vis. 104(2), 154–171 (2013)CrossRefGoogle Scholar
  23. 23.
    Vedaldi, A., Soatto, S.: Quick shift and kernel methods for mode seeking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 705–718. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  24. 24.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, IEEE, vol. 1, pp. I-511 (2001)Google Scholar
  25. 25.
    Watts, A.C., Perry, J.H., Smith, S.E., Burgess, M.A., Wilkinson, B.E., Szantoi, Z., Ifju, P.G., Percival, H.F.: Small unmanned aircraft systems for low-altitude aerial surveys. J. Wildl. Manag. 74(7), 1614–1619 (2010)CrossRefGoogle Scholar
  26. 26.
    Wilson, S., Bazin, R., Calvert, W., Doyle, T., Earsom, S.D., Oswald, S.A., Arnold, J.M.: Abundance and trends of colonial waterbirds on the large lakes of southern manitoba. Waterbirds 37(3), 233–244 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Frederic Maire
    • 1
    Email author
  • Luis Mejias Alvarez
    • 1
  • Amanda Hodgson
    • 2
  1. 1.Science and Engineering FacultyQueensland University of TechnologyBrisbaneAustralia
  2. 2.Murdoch University Cetacean Research UnitMurdoch UniversityPerthAustralia

Personalised recommendations