Advertisement

Continuous Geriatric Assessments Supported by a Mobile Service Robot: Movement Analysis

  • Melvin Isken
  • Andreas Hein
Chapter
Part of the Advanced Technologies and Societal Change book series (ATSC)

Abstract

This document describes a method to measure geriatric assessment data by using a mobile robotic platform that is able to track and analyze human motion parameters. The information gathered by this system can be used to assess the user’s health status. Geriatric mobility assessments conducted by a mobile robot provide significant advantages over current methodologies. For example, sensor data can be used to track multiple assessments at once. Additionally, the robot navigation capabilities can be enhanced by the use of geriatric assessment data. This paper concentrates on the movement analysis aspect of the whole system due to the limited space.

Keywords

Mobile Robot Geriatric Assessment Gait Parameter Service Robot Kinect Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alzheimer’s Disease International: World Alzheimer Report (2009). http://www.alz.co.uk/research/files/WorldAlzheimerReport.pdf
  2. 2.
    Bachmann, C., Gerber, H., Stacoff, A.: Messsysteme, Messmethoden und Beispiele zur instrumentierten Ganganalyse. Schweizerische Zeitschrift für Sportmedizin und Sporttraumatologie 56(2), 29–34 (2008)Google Scholar
  3. 3.
    Beauchet, O., Allali, G., Berrut, G., Hommet, C., Dubost, V., Assal, F.: Gait analysis in demented subjects: Interests and perspectives. Neuropsychiatr. Dis. Treat. 4(1), 155–160 (2008)CrossRefGoogle Scholar
  4. 4.
    Butler, A.A., Menant, J.C., Tiedemann, A.C., Lord, S.R.: Age and gender differences in seven tests of functional mobility. J. Neuroeng. Rehabil. 6, 31 (2009). doi: 10.1186/1743-0003-6-31 CrossRefGoogle Scholar
  5. 5.
    Cameron, K., Hughes, K., Doughty, K.: Reducing fall incidence in community elders by telecare using predictive systems. In: Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 3, pp. 1036–1039. doi: 10.1109/IEMBS.1997.756524 (1997)
  6. 6.
    Cesta, A., Cortellessa, G., Giuliani, M.V., Pecora, F., Scopelliti, M., Tiberio, L.: Psychological implications of domestic assistive technology for the elderly. Psychol. J. 5, 229–252 (2007)Google Scholar
  7. 7.
    Folstein, M.F., Folstein, S.E., McHugh, P.R.: Mini-mental state: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research 12(3), 189–198. doi: 10.1016/0022-3956(75)90026-6. http://www.sciencedirect.com/science/article/pii/0022395675900266 (1975)
  8. 8.
    Frenken, T., Lipprandt, M., Kluthe, R., Hein, A.: Eine kosteneffektive und flexible AAL-Plattform am Beispiel eines integrierten Versorgungsprozesses—A Cost-effective and Flexible Technical Platform for Integration of Domestic Environments into Health Care Networks. In: Proceedings of the 3. Deutscher AAL-Kongress: Assistenzsysteme im Dienste des Menschen: Zuhause und unterwegs, Ambient Assisted Living. VDE Verlag (2010)Google Scholar
  9. 9.
    Frenken, T., Isken, M., Volkening, N., Brell, M., Hein, A.: Criteria for Quality and Safety while Performing Unobtrusive Domestic Mobility Assessments using Mobile Service Robots. In: R. Wichert, B. Eberhardt (eds.) Technik für ein selbstbestimmtes Leben (AAL 2012), p. 10. VDE Verlag, Berlin (2012)Google Scholar
  10. 10.
    Frenken, T., Brell, M., Gövercin, M., Wegel, S., Hein, A.: aTUG: Technical apparatus for gait and balance analysis within component-based timed Up & Go using mutual ambient sensors. J. Ambient Intel. Humaniz. Comput. 4(6), 759–778 (2012)Google Scholar
  11. 11.
    Isken, Melvin, Borgmann, Bjoern, Hein, Andreas: Mobile robot platform to track user movement and behaviour. In: Botía, Juan A., Álvarez-García, Juan Antonio, Fujinami, Kaori, Barsocchi, Paolo, Riedel, Till (eds.) Evaluating AAL Systems Through Competitive Benchmarking. Communications in Computer and Information Science, vol. 386, pp. 94–105. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Kaye, J.a., Maxwell, S.a., Mattek, N., Hayes, T.L., Dodge, H., Pavel, M., Jimison, H.B., Wild, K., Boise, L., Zitzelberger, T.a.: Intelligent Systems For Assessing Aging Changes: home-based, unobtrusive, and continuous assessment of aging. The journals of gerontology. Series B, Psychological sciences and social sciences 66 Suppl 1, i180–90 (2011). doi: 10.1093/geronb/gbq095. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3132763/
  13. 13.
    Kerr, K., White, J., Barr, D., Mollan, R.: Standardization and definitions of the sit-stand-sit movement cycle. Gait & Posture 2(3), 182–190 (1994). doi: 10.1016/0966-6362(94)90006-X. http://www.sciencedirect.com/science/article/B6T6Y-4BYHHVT-15/2/68862c17c08a590541a1178f13399864
  14. 14.
    Liu, J., Lockhart, T.E., Jones, M., Martin, T.: Local dynamic stability assessment of motion impaired Elderly using electronic textile pants. IEEE Trans. Autom. Sci. Eng. 5(4), 696–702 (2008). doi: 10.1109/TASE.2008.923821 CrossRefGoogle Scholar
  15. 15.
    Pallejà, T., Teixidó, M., Tresanchez, M., Palacín, J.: Measuring Gait Using a Ground Laser Range Sensor. Sensors 9(11), 9133–9146 (2009). doi: 10.3390/s91109133. http://www.mdpi.com/1424-8220/9/11/9133/
  16. 16.
    Podsiadlo, D., Richardson, S.: The timed Up & Go: a test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 39(2), 142–148 (1991)CrossRefGoogle Scholar
  17. 17.
    Reiser, U., Connette, C.P., Fischer, J., Kubacki, J., Bubeck, A., Weisshardt, F., Jacobs, T., Parlitz, C., Hägele, M., Verl, A.: Care-O-bot 3—Creating a product vision for service robot applications by integrating design and technology. In: The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1992–1997 (2009)Google Scholar
  18. 18.
    Tinetti, M.E.: Performance-oriented assessment of mobility problems in elderly patients. J. Am. Geriatr. Soc. 34(2), 119–126 (1986)CrossRefGoogle Scholar
  19. 19.
    Wang, R., Medioni, G., Winstein, C.J., Blanco, C.: Home monitoring musculo-skeletal disorders with a single 3D sensor. In: Computer Vision and Pattern Recognition Workshops (CVPRW), 2013 IEEE Conference on, pp. 521–528. IEEE (2013)Google Scholar
  20. 20.
    Yesavage, J.A., Brink, T., Rose, T.L., Lum, O., Huang, V., Adey, M., Leirer, V.O.: Development and validation of a geriatric depression screening scale: a preliminary report. Journal of psychiatric research 17(1), 37–49 (1983). http://www.sciencedirect.com/science/article/pii/0022395682900334
  21. 21.
    Zhou, H., Hu, H.: Human motion tracking for rehabilitation: A survey. Biomedical Signal Processing and Control 3(1), 1–18 (2008). doi: 10.1016/j.bspc.2007.09.001. http://www.sciencedirect.com/science/article/pii/S1746809407000778
  22. 22.
    Zijlstra, W., Hof, A.L.: Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait & Posture 18(2), 1–10 (2003). doi: 10.1016/S0966-6362(02)00190-X. http://www.sciencedirect.com/science/article/pii/S096663620200190X

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of OldenburgOldenburgGermany

Personalised recommendations