Dispersion Characteristics of Zinc Oxide Nanorods Coated with Thin Silver Layer and Organized in Two-Dimensional Uniform Arrays

  • A. M. LererEmail author
  • P. E. Timoshenko
  • E. M. Kaidashev
  • A. S. Puzanov
  • T. Y. Chernikova
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 175)


The problem on electromagnetic waves propagation in a two-dimensional periodic array of zinc oxide nano-waveguides covered with a thin metal film is solved by the method of variables separation in cylindrical coordinates. The numerical results obtained by the method are in good agreement with the results computed by the commercial software COMSOL MultiphysicsTM over all optical range and have minor deviations for the wavelength range close to the critical wavelength. Resonances located at the amplitude-frequency characteristics of optical nano-antennas may be interpreted as resonances of circular bilayer nano-wave-guide segments with the ZnO core covered with thin metal shell. The results may also be used to predict the resonance wavelength of two-dimensional periodic arrays of ZnO nanorods , coated with a thin metal layer and grown on a dielectric substrate.


Zinc Permeability Microwave Summing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the support of the Russian Ministry of Education and Science, provided by grant 16.219.2014/K, and the part of the Internal Grant project of the Southern Federal University in 2014–2016, provided by grant 213.01.-07.2014/08PCHVG, for carrying out this research study.


  1. 1.
    E.M. Kaidashev, N.V. Lyanguzov, A.M. Lerer, E.A. Raspopova, Tech. Phys. Lett. 40(7), 79 (2014)Google Scholar
  2. 2.
    A.D. Rakic, A.B. Djurisic, J.M. Elazar, M.L. Majewski, Appl. Opt. 37(22), 5271 (1998)CrossRefGoogle Scholar
  3. 3.
    Z.H. Dai, R.J. Zhang, J. Shao, Y.M. Chen, Y.X. Zheng, J.D. Wu, L.Y. Chen, J. Korean Phys. Soc. 55(3), 1227 (2009)Google Scholar
  4. 4.
    S.A. Mayer, Springer, New York (2007)Google Scholar
  5. 5.
    M.A. Lavrentiev, B.V. Shabbat, Nauka, Moscow, 1965 (In Russian)Google Scholar
  6. 6.
    A.M. Lerer, I.V. Donets, G.A. Kalinchenko, P.V. Makhno, Electromagnet. Waves Electron. Syst. 18(9), 5 (2013). (In Russian)Google Scholar
  7. 7.
    A.M. Lerer, I.V. Donets, G.A. Kalinchenko, P.V. Makhno, Photon. Res. 2(1), 31 (2014)CrossRefGoogle Scholar
  8. 8.
    M. Lorenz, A. Rahm, B. Cao, Z.P. Jesus, E.M. Kaidashev, N. Zhakarov, G. Wagner, Th Nobis, C. Czekalla, G. Zimmermann, M. Grundmann, Phys. Status Solidi B 247(6), 1265 (2010)CrossRefGoogle Scholar
  9. 9.
    N.V. Lyanguzov, V.E. Kaydashev, I.N. Zakharchenko, YuA Kuprina, O.A. Bunina, YuI Yuzyuk, A.P. Kiselev, E.M. Kaidashev, Tech. Phys. 57(4), 534 (2012)CrossRefGoogle Scholar
  10. 10.
    J. Hoffmann, C. Hafner, P. Leidenberger, J. Hesselbarth, S. Burger, in Proceedings of SPIE7390, Modeling Aspects in Optical Metrology II, vol. 3790, p. 73900J. Munich, Germany, 2009Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • A. M. Lerer
    • 1
    Email author
  • P. E. Timoshenko
    • 1
    • 2
  • E. M. Kaidashev
    • 2
  • A. S. Puzanov
    • 1
  • T. Y. Chernikova
    • 1
  1. 1.Department of PhysicsSouthern Federal UniversityRostov-on-DonRussia
  2. 2.Laboratory of NanomaterialsSouthern Federal UniversityRostov-on-DonRussia

Personalised recommendations