Advertisement

A Generalized Net Model for Evaluation Process Using InterCriteria Analysis Method in the University

  • Evdokia Sotirova
  • Veselina Bureva
  • Sotir Sotirov
Chapter
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 332)

Abstract

In the paper is constructed a generalized net model which describes the process of evaluation of objects using a set of criteria. For calculating evaluations is used InterCriteria analysis method that detects possible correlations between pairs of criteria. The objects can be lecturers, students, Ph.D. candidates, problems solved by students, disciplines, and so on. The model can be used for monitoring and analysis of the process of assessment.

Keywords

Generalized net Intercriteria analysis Intuitionistic fuzziness Index matrices University 

Notes

Acknowledgements

The authors are thankful for the support provided by the Bulgarian National Science Fund under Grant Ref. No. DFNI-I-02-5 “InterCriteria Analysis: A New Approach”.

References

  1. 1.
    Atanassov, K., Mavrov, D., Atanassova, V.: InterCriteria decision making. A new approach for multicriteria decision making, based on index matrices and intuitionistic fuzzy sets. Issues IFS GN 11, 1–7 (2014)Google Scholar
  2. 2.
    Atanassova, V., Mavrov, D., Doukovska, L., Atanassov, K.: Discussion on the threshold values in the InterCriteria decision making approach. Notes Intuit. Fuzzy Sets 20(2), 94–99 (2014)Google Scholar
  3. 3.
    Melo-Pinto, P., Kim, T., Atanassov, K., Sotirova, E., Shannon, A., Krawczak, M.: Generalized net model of e-learning evaluation with intuitionistic fuzzy estimations. Issues in the Representation and Processing of Uncertain and Imprecise Information, pp. 241–249. Warszawa (2005)Google Scholar
  4. 4.
    Shannon, A., Langova-Orozova, D., Sotirova, E., Petrounias, I., Atanassov, K., Krawczak, M., Melo-Pinto, P., Kim, T.: Generalized Net Modelling of University Processes. KVB Visual Concepts Pty Ltd, Monograph No. 7, Sydney (2005)Google Scholar
  5. 5.
    Shannon, A., Atanassov, K., Sotirova, E., Langova-Orozova, D., Krawczak, M., Melo-Pinto, P., Petrounias, I., Kim, T.: Generalized Nets and Information Flow Within a University, Warsaw School of Information Technology, Warsaw (2007)Google Scholar
  6. 6.
    Shannon, A., Sotirova, E., Petrounias, I., Atanassov, K., Krawczak, M., Melo-Pinto, P., Kim, T.: Intuitionistic fuzzy estimations of lecturers’ evaluation of student work. In: First International Workshop on Intuitionistic Fuzzy Sets, Generalized Nets and Knowledge Engineering, pp. 44–47. University of Westminster, London, 6–7 Sept 2006Google Scholar
  7. 7.
    Shannon, A., Sotirova, E., Petrounias, I., Atanassov, K., Krawczak, M., Melo-Pinto, P., Kim, T.: Generalized net model of lecturers’ evaluation of student work with intuitionistic fuzzy estimations. In: Second International Workshop on Intuitionistic Fuzzy Sets. Notes on IFS, vol. 12, No. 4, pp. 22–28. Banska Bystrica, Slovakia, 03 Dec 2006Google Scholar
  8. 8.
    Shannon, A., Sotirova, E., Petrounias, I., Atanassov, K., Krawczak, M., Melo-Pinto, P., Sotirov, S., Kim, T.: Generalized net model of the process of ordering of university subjects. In: Seventh Int. Workshop on GNs, Sofia, pp. 25–29. 14–15 July 2006Google Scholar
  9. 9.
    Shannon, A., Dimitrakiev, D., Sotirova, E., Krawczak, M.: Kim, T.: Towards a model of the digital university: generalized net model of a lecturer’s evaluation with intuitionistic fuzzy estimations. Cybernetics and Information Technologies, vol. 9, No. 2, pp. 69–78. Bulgarian Academy of Sciences, Sofia (2009)Google Scholar
  10. 10.
    Shannon, A., Sotirova, E., Hristova, M., Kim, T.: Generalized Net Model of a student’s course evaluation with intuitionistic fuzzy estimations in a digital university. Proc. Jangjeon Math. Soc. 13(1), 31–38 (2010)zbMATHGoogle Scholar
  11. 11.
    Shannon, A., Riečan, B., Sotirova, E., Inovska, G., Atanassov, K., Krawczak, M., Melo-Pinto, P., Kim, T.: A generalized net model of university subjects rating with intuitionistic fuzzy estimations. Notes Intuit. Fuzzy Sets 18(3), 61–67 (2012)Google Scholar
  12. 12.
    Shannon, A., Riečan, B., Sotirova, E., Krawczak, M., Atanassov, K., Melo-Pinto, P., Kim, T.: Modelling the process of Ph.D. preparation using generalized nets. In: 14th International Workshop on Generalized Nets, pp. 34–38. Burgas, 29–30 Nov 2013Google Scholar
  13. 13.
    Sotirova, E., Sotirov, S., Vardeva, I., Riečan, B., Publication’s assessment with intuitionistic fuzzy estimations. Notes Intuit. Fuzzy Sets 18(4), 26–31 (2012)Google Scholar
  14. 14.
    Atanassov, K.: Generalized Nets. World Scientific, Singapore (1991)Google Scholar
  15. 15.
    Atanassov, K.: On Generalized Nets Theory. Prof. M. Drinov Academic Publishing House, Sofia (2007)zbMATHGoogle Scholar
  16. 16.
    Atanassov, K.: Intuitionistic Fuzzy Sets. Springer, Berlin (1999)CrossRefzbMATHGoogle Scholar
  17. 17.
    Atanassov, K.: On Intuitionistic Fuzzy Sets Theory. Springer, Berlin (2012)CrossRefzbMATHGoogle Scholar
  18. 18.
    Sotirova, E.: Classification of the students’ intuitionistic fuzzy estimations by a 3-dimensional self organizing map. Notes Intuit. Fuzzy Sets 17(4), 64–68 (2011)Google Scholar
  19. 19.
    Atanassov, K.: Generalized index matrices. Comptes rendus de l’Academie Bulgare des Sciences 40(11), 15–18 (1987)Google Scholar
  20. 20.
    Atanassov, K.: On index matrices. Part 1: standard cases. Adv. Stud. Contemp. Math. 20(2), 291–302 (2010)Google Scholar
  21. 21.
    Atanassov, K., Szmidt, E., Kacprzyk, J.: On intuitionistic fuzzy pairs, Notes Intuit. Fuzzy Sets 19(3), 1–13 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Evdokia Sotirova
    • 1
  • Veselina Bureva
    • 1
  • Sotir Sotirov
    • 1
  1. 1.“Prof. Asen Zlatarov” UniversityBurgasBulgaria

Personalised recommendations