Advertisement

Differential Evolution with Fuzzy Logic for Dynamic Adaptation of Parameters in Mathematical Function Optimization

  • Oscar CastilloEmail author
  • Patricia Ochoa
  • José Soria
Chapter
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 332)

Abstract

The proposal described in this paper uses the Differential Evolution (DE) algorithm as an optimization method in which we want to dynamically adapt its parameters using fuzzy logic control systems, with the goal that the fuzzy system gives the optimal parameter of the DE algorithm to find better results, depending on the type of problems the DE is applied.

Keywords

Fuzzy Logic Differential Evolution Differential Evolution Algorithm Target Vector Fuzzy Logic Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aguas-Marmolejo, S.J., Castillo, O.: Optimization of membership functions for Type-1 and Type 2 fuzzy controllers of an autonomous mobile robot using PSO. In: Recent Advances on Hybrid Intelligent Systems, pp. 97–104 (2013)Google Scholar
  2. 2.
    Astudillo, L., Melin, P., Castillo, O.: Optimization of a fuzzy tracking controller for an autonomous mobile robot under perturbed torques by means of a chemical optimization paradigm. In: Recent Advances on Hybrid Intelligent Systems, pp. 3–20 (2013)Google Scholar
  3. 3.
    Eftekhari, M., Katebi, S.D., Karimi, M., Jahanmir, A.H.: Eliciting transparent fuzzy model using differential evolution. Appl. Soft Comput. School of Engineering, Shiraz University, Shiraz, Iran, 8, 466–476 (2008)Google Scholar
  4. 4.
    Fierro, R., Castillo, O.: Design of fuzzy control systems with different PSO variants. In: Recent Advances on Hybrid Intelligent Systems, pp. 81–88 (2013)Google Scholar
  5. 5.
    Hachicha, N., Jarboui, B., Siarry, P.: A fuzzy logic control using a differential evolution algorithm aimed at modelling the financial market dynamics. Institut Supérieur de Commerce et de Comptabilité de Bizerte, Zarzouna 7021, Bizerte, Tunisia, Information Sciences 181, 79–91 (2011)Google Scholar
  6. 6.
    Lizárraga, E., Castillo, O., Soria, J.: A method to solve the traveling salesman problem using ant colony optimization variants with ant set partitioning. In: Recent Advances on Hybrid Intelligent Systems, pp. 237–2461 (2013)Google Scholar
  7. 7.
    Melendez, A., Castillo, O.: Evolutionary optimization of the fuzzy integrator in a navigation system for a mobile robot. In: Recent Advances on Hybrid Intelligent Systems, pp. 21–31 (2013)Google Scholar
  8. 8.
    Melin, P., Olivas, F., Castillo, O., Valdez, F., Soria, J., García, J.: Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic. Expert Syst. Appl. 40(8), 3196–3206 (2013)CrossRefGoogle Scholar
  9. 9.
    Mezura-Montes, E. Palomeque-Ortiz, A.: Self-adaptive and deterministic parameter control in differential evolution for constrained optimization. Efren Mezura-Montes, Laboratorio Nacional de Inform´atica Avanzada (LANIA A.C.), R´ebsamen 80, Centro, Xalapa, Veracruz, 91000, MEXICO (2009)Google Scholar
  10. 10.
    Neyoy, H., Castillo, O., José Soria: Dynamic Fuzzy Logic Parameter Tuning for ACO and Its Application in TSP Problems. Recent Advances on Hybrid Intelligent Systems, pp. 259–271 (2013)Google Scholar
  11. 11.
    Oh, S.-K., Kim, W.-D., Pedrycz, W.: Design of optimized cascade fuzzy controller based on differential evolution: Simulation studies and practical insights, Department of Electrical Engineering, The University of Suwon. Eng. Appl. Artif. Intell. 25, 520–532 (2012)CrossRefGoogle Scholar
  12. 12.
    Olivas F., Castillo O.: Particle Swarm Optimization with Dynamic Parameter Adaptation Using Fuzzy Logic for Benchmark Mathematical Functions. Recent Advances on Hybrid Intelligent Systems 2013: 247–258Google Scholar
  13. 13.
    Price, Storn R., Lampinen, J. A., Differential Evolution, Kenneth V., Springer, Berlin (2005)Google Scholar
  14. 14.
    Raofen, W., Zhang, J., Zhang, Y., Wang, X.: Assessment of human operator functional state using a novel differential evolution optimization based adaptive fuzzy model, Lab for Brain-Computer Interfaces and Control, East China University of Science and Technology, Shanghai 200237, PR China, Biomedical Signal Processing and Control 7 (2012) 490– 498Google Scholar
  15. 15.
    Valdez, F., Melin, P., Castillo, O.: Bio-inspired optimization methods on graphic processing unit for minimization of complex mathematical functions. In: Recent Advances on Hybrid Intelligent Systems, pp. 313–322 (2013)Google Scholar
  16. 16.
    Vucetic, D.: Fuzzy Differential Evolution Algorithm. The University of Western Ontario, London, Ontario, Canada (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Tijuana Institute of TechnologyTijuanaMexico

Personalised recommendations