SAT-Based Explicit LTL Reasoning

  • Jianwen LiEmail author
  • Shufang Zhu
  • Geguang Pu
  • Moshe Y. Vardi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9434)


We present here a new explicit reasoning framework for linear temporal logic (LTL), which is built on top of propositional satisfiability (SAT) solving. As a proof-of-concept of this framework, we describe a new LTL satisfiability algorithm. We implemented the algorithm in a tool, Aalta_v2.0, which is built on top of the Minisat SAT solver. We tested the effectiveness of this approach by demonstrating that Aalta_v2.0 significantly outperforms all existing LTL satisfiability solvers.


Model Check Linear Temporal Logic Disjunctive Normal Form Propositional Formula Bound Model Check 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank anonymous reviewers for useful comments. The work is supported in part by NSF grants CCF-1319459, by NSF Expeditions in Computing project “ExCAPE: Expeditions in Computer Augmented Program Engineering”, and by BSF grant 9800096. Geguang Pu is partially supported by the NSFC grants No. 61202069 and No. 61361136002. Jianwen Li is partially supported by Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things (ZF1213).


  1. 1.
    Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  2. 2.
    Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A., Mover, S., Roveri, M., Tonetta, S.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Heidelberg (2014) Google Scholar
  3. 3.
    Claessen, K., Sörensson, N.: A liveness checking algorithm that counts. In: Cabodi, G., Singh, S. (ed.) FMCAD, pp. 52–59. IEEE (2012)Google Scholar
  4. 4.
    Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  5. 5.
    Courcoubetis, C., Vardi, M.Y., Wolper, P., Yannakakis, M.: Memory efficient algorithms for the verification of temporal properties. Formal Methods Syst. Des. 1, 275–288 (1992)CrossRefzbMATHGoogle Scholar
  6. 6.
    D’Agostino, M.: Tableau methods for classical propositional logic. In: D’Agostino, M., Gabbay, D.M., Hähnle, R., Posegga, J. (eds.) Handbook of Tableau Methods, pp. 45–123. Springer, Netherlands (1999)CrossRefGoogle Scholar
  7. 7.
    Daniele, M., Giunchiglia, F., Vardi, M.Y.: Improved automata generation for linear temporal logic. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 249–260. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  8. 8.
    Duret-Lutz, A., Poitrenaud, D: SPOT: an extensible model checking library using transition-based generalized büchi automata. In: Proceedings of the 12th International Workshop on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, pp. 76–83. IEEE Computer Society (2004)Google Scholar
  9. 9.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  10. 10.
    Fisher, M.: A normal form for temporal logics and its applications in theorem-proving and execution. J. Logic Comput. 7(4), 429–456 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verification of linear temporal logic. In: Dembiski, P., Sredniawa, M. (eds.) Protocol Specification, Testing, and Verification, pp. 3–18. Chapman & Hall, Warsaw (1995)Google Scholar
  12. 12.
    Giunchiglia, F., Sebastiani, R.: Building decision procedures for modal logics from propositional decision procedures - the case study of modal K. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 583–597. Springer, Heidelberg (1996) CrossRefGoogle Scholar
  13. 13.
    Heljanko, K., Junttila, T.A., Latvala, T.: Incremental and complete bounded model checking for full PLTL. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 98–111. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  14. 14.
    Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley, Reading (2003) Google Scholar
  15. 15.
    Hustadt, U., Konev, B.: TRP++ 2.0: a temporal resolution prover. In: Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 274–278. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  16. 16.
    Larrabee, T.: Test pattern generation using Boolean satisfiability. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst 11(1), 4–15 (1992)CrossRefGoogle Scholar
  17. 17.
    Li, J., Pu, G., Zhang, L., Vardi, M.Y., He, J.: Fast LTL satisfiability checking by SAT solvers. CoRR, abs/1401.5677 (2014)Google Scholar
  18. 18.
    Li, J., Zhang, L., Pu, G., Vardi, M., He, J.: LTL satisfibility checking revisited. In: 20th International Symposium on Temporal Representation and Reasoning, pp. 91–98 (2013)Google Scholar
  19. 19.
    Malik, S., Zhang, L.: Boolean satisfiability from theoretical hardness to practical success. Commun. ACM 52(8), 76–82 (2009)CrossRefGoogle Scholar
  20. 20.
    Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems: Specification. Springer, New York (1992)CrossRefzbMATHGoogle Scholar
  21. 21.
    Marques-Silva, J., Lynce, I.: On improving MUS extraction algorithms. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 159–173. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  22. 22.
    McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  23. 23.
    McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers, Boston (1993)CrossRefzbMATHGoogle Scholar
  24. 24.
    Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th IEEE Symposium on Foundations of Computer Science, pp. 46–57 (1977)Google Scholar
  25. 25.
    Rozier, K.Y., Vardi, M.Y.: LTL satisfiability checking. Int. J. Softw. Tools Technol. Transf. 12(2), 123–137 (2010)CrossRefGoogle Scholar
  26. 26.
    Schuppan, V., Darmawan, L.: Evaluating LTL satisfiability solvers. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 397–413. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  27. 27.
    Schwoon, S., Esparza, J.: A note on on-the-fly verification algorithms. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 174–190. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  28. 28.
    Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  29. 29.
    Suda, M., Weidenbach, C.: A PLTL-prover based on labelled superposition with partial model guidance. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 537–543. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  30. 30.
    Tabakov, D., Rozier, K.Y., Vardi, M.Y.: Optimized temporal monitors for SystemC. Formal Methods Syst. Des. 41(3), 236–268 (2012)CrossRefzbMATHGoogle Scholar
  31. 31.
    Vardi, M.: On the complexity of epistemic reasoning. In: Proceedings of the Fourth Annual Symposium on Logic in Computer Science, pp. 243–252. IEEE Press, Piscataway (1989)Google Scholar
  32. 32.
    Vardi, M.Y.: Unified verification theory. In: Banieqbal, B., Barringer, H., Pnueli, A. (eds.) Temporal Logic in Specification. LNCS, vol. 398, pp. 202–212. Springer, Heidelberg (1989) CrossRefGoogle Scholar
  33. 33.
    Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification. In: Proceedings of the 1st IEEE Symposium on Logic in Computer Science, pp. 332–344 (1986)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jianwen Li
    • 1
    • 2
    Email author
  • Shufang Zhu
    • 2
  • Geguang Pu
    • 2
  • Moshe Y. Vardi
    • 1
  1. 1.Department of Computer ScienceRice UniversityHoustonUSA
  2. 2.Shanghai Key Laboratory of Trustworthy ComputingEast China Normal UniversityShanghaiPeople’s Republic of China

Personalised recommendations