Haifa Verification Conference

Hardware and Software: Verification and Testing pp 3-18 | Cite as

XSpeed: Accelerating Reachability Analysis on Multi-core Processors

  • Rajarshi Ray
  • Amit Gurung
  • Binayak Das
  • Ezio Bartocci
  • Sergiy Bogomolov
  • Radu Grosu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9434)

Abstract

We present XSpeed a parallel state-space exploration algorithm for continuous systems with linear dynamics and nondeterministic inputs. The motivation of having parallel algorithms is to exploit the computational power of multi-core processors to speed-up performance. The parallelization is achieved on two fronts. First, we propose a parallel implementation of the support function algorithm by sampling functions in parallel. Second, we propose a parallel state-space exploration by slicing the time horizon and computing the reachable states in the time slices in parallel. The second method can be however applied only to a class of linear systems with invertible dynamics and fixed input. A GP-GPU implementation is also presented following a lazy evaluation strategy on support functions. The parallel algorithms are implemented in the tool XSpeed. We evaluated the performance on two benchmarks including an 28 dimension Helicopter model. Comparison with the sequential counterpart shows a maximum speed-up of almost 7\(\times \) on a 6 core, 12 thread Intel Xeon CPU E5-2420 processor. Our GP-GPU implementation shows a maximum speed-up of 12\(\times \) over the sequential implementation and 53\(\times \) over SpaceEx (LGG scenario), the state of the art tool for reachability analysis of linear hybrid systems. Experiments illustrate that our parallel algorithm with time slicing not only speeds-up performance but also improves precision.

References

  1. 1.
    Althoff, M., Krogh, B.H.: Zonotope bundles for the efficient computation of reachable sets. In: Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, CDC-ECC 2011, Orlando, FL, USA, 12–15 December 2011, pp. 6814–6821. IEEE (2011). http://dx.doi.org/10.1109/CDC.2011.6160872
  2. 2.
    Asarin, E., Dang, T., Girard, A.: Reachability analysis of nonlinear systems using conservative approximation. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 20–35. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  3. 3.
    Bartocci, E., DeFrancisco, R., Smolka, S.A.: Towards a gpgpu-parallel SPIN model checker. In: Rungta and Tkachuk [19], pp. 87–96. http://doi.acm.org/10.1145/2632362.2632379
  4. 4.
    Dantzig, G.B., Thapa, M.N.: Linear Programming 1: Introduction. Springer, New York (1997)MATHGoogle Scholar
  5. 5.
    Dantzig, G.B., Thapa, M.N.: Linear Programming 2: Theory and Extensions. Springer, New York (2003)MATHGoogle Scholar
  6. 6.
    Filippidis, I., Holzmann, G.J.: An improvement of the piggyback algorithm for parallel model checking. In: Rungta and Tkachuk [19], pp. 48–57. http://doi.acm.org/10.1145/2632362.2632375
  7. 7.
    Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. Int. J. Softw. Tools Technol. Transf. (STTT) 10(3), 263–279 (2008)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard, A., Dang, T., Maler, O.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  9. 9.
    Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari and Thiele [16], pp. 291–305. http://dx.doi.org/10.1007/978-3-540-31954-2_19
  10. 10.
    Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari and Thiele [16], pp. 291–305Google Scholar
  11. 11.
    Girard, A., Le Guernic, C.: Efficient reachability analysis for linear systems using support functions. In: Proceedings of IFAC World Congress (2008)Google Scholar
  12. 12.
    Le Guernic, C., Girard, A.: Reachability analysis of hybrid systems using support functions. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 540–554. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  13. 13.
    Holzmann, G.J.: Parallelizing the spin model checker. In: Donaldson, A., Parker, D. (eds.) SPIN 2012. LNCS, vol. 7385, pp. 155–171. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  14. 14.
    Lalami, M.E., Baz, D.E., Boyer, V.: Multi GPU implementation of the simplex algorithm. In: Thulasiraman, P., Yang, L.T., Pan, Q., Liu, X., Chen, Y., Huang, Y., Chang, L., Hung, C., Lee, C., Shi, J.Y., Zhang, Y. (eds.) 13th IEEE International Conference on High Performance Computing and Communication, HPCC 2011, Banff, Alberta, Canada, 2–4 September 2011, pp. 179–186. IEEE (2011). http://dx.doi.org/10.1109/HPCC.2011.32
  15. 15.
    Makhorin, A.: GNU Linear Programming Kit, v.4.37 (2009). http://www.gnu.org/software/glpk
  16. 16.
    Bujorianu, M.L., Lygeros, J., Bujorianu, M.C.: Bisimulation for general stochastic hybrid systems. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 198–214. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  17. 17.
    Ray, R., Gurung, A.: Poster: parallel state space exploration of linear systems with inputs using xspeed. In: Girard, A., Sankaranarayanan, S. (eds.) Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control, HSCC 2015, Seattle, WA, USA, 14–16 April 2015, pp. 285–286. ACM (2015). http://doi.acm.org/10.1145/2728606.2728644
  18. 18.
    Rockafellar, R.T., Wets, R.J.B.: Variational Analysis, vol. 317. Springer, New York (1998)MATHGoogle Scholar
  19. 19.
    Rungta, N., Tkachuk, O. (eds.): 2014 International Symposium on Model Checking of Software, SPIN 2014, Proceedings, San Jose, CA, USA, 21–23 July 2014. ACM (2014). http://dl.acm.org/citation.cfm?id=2632362
  20. 20.
    Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control: Analysis and Design. Wiley, New York (2005)MATHGoogle Scholar
  21. 21.
    Spampinato, D.G., Elster, A.C.: Linear optimization on modern GPUS. In: 23rd IEEE International Symposium on Parallel and Distributed Processing, IPDPS 2009, Rome, Italy, 23–29 May 2009, pp. 1–8. IEEE (2009). http://dx.doi.org/10.1109/IPDPS.2009.5161106
  22. 22.
    Stursberg, O., Krogh, B.H.: Efficient representation and computation of reachable sets for hybrid systems. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 482–497. Springer, Heidelberg (2003) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Rajarshi Ray
    • 1
  • Amit Gurung
    • 1
  • Binayak Das
    • 1
  • Ezio Bartocci
    • 2
  • Sergiy Bogomolov
    • 3
  • Radu Grosu
    • 2
  1. 1.National Institute of Technology MeghalayaShillongIndia
  2. 2.Vienna University of TechnologyViennaAustria
  3. 3.Institute of Science and Technology AustriaKlosterneuburgAustria

Personalised recommendations