Clothing Similarity Estimation Using Dominant Color Descriptor and SSIM Index

  • Piotr Czapiewski
  • Paweł Forczmański
  • Krzysztof Okarma
  • Dariusz Frejlichowski
  • Radosław Hofman
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 403)

Abstract

This paper deals with the problem of estimating the similarity of clothing for the purpose of fashion-related e-commerce systems. The images presenting fashion models are segmented and analyzed in order to detect clothing characteristics. We propose a method based on human pose estimation and body parts segmentation, followed by the analysis of dominant color and structural similarity, independently for particular body segments. The algorithm can be utilized to perform clusterization or in the simpler case—to directly search for similar outfits. The experiments performed using 1800 real-life photos proved the applicability of the proposed approach.

References

  1. 1.
    Brookings, T., Grashow, R., Marder, E.: Statistics of neuronal identification with open and closed loop measures of intrinsic excitability. Frontiers in Neural Circuits 6(19), 2012, doi:10.3389/fncir.2012.00019
  2. 2.
    Chen, Huizhong, Gallagher, Andrew, Girod, Bernd: Describing Clothing by Semantic Attributes. In: Fitzgibbon, Andrew, Lazebnik, Svetlana, Perona, Pietro, Sato, Yoichi, Schmid, Cordelia (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 609–623. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Chen, Q., Li, J., Liu, Z., Lu, G., Bi, X., Wang, B.: Measuring clothing image similarity with bundled features. Int. J. Cloth. Sci. Technol. 25(2), 119–130 (2013)CrossRefGoogle Scholar
  4. 4.
    Czapiewski, P., Forczmański, P., Frejlichowski, D., Hofman, R.: Clustering-Based Retrieval of Similar Outfits Based on Clothes Visual Characteristics. In: Choraś, R.S. (ed.) Image Processing & Communications Challenges 6,Advances in Intelligent Systems and Computing, vol. 313, pp. 29–36, Springer International Publishing (2015)Google Scholar
  5. 5.
    Di, W., Wah, C., Bhardwaj, A., Piramuthu, R., Sundaresan, N.: Style finder: Fine-grained clothing style detection and retrieval. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2013, pp. 8–13. IEEE (2013)Google Scholar
  6. 6.
    Eichner, M., Ferrari, V.: Better appearance models for pictorial structures. In: Proceedings of British Machine Vision Conference (2009)Google Scholar
  7. 7.
    Eichner, M., Marín-Jiménez, M. J., Zisserman, A., Ferrari, V.: 2D articulated human pose estimation software, ETH Zurich, Visual Geometry Group, http://groups.inf.ed.ac.uk/calvin/articulated_human_pose_estimation_code/
  8. 8.
    Eichner, M., Marin-Jimenez, M., Zisserman, A., Ferrari, V.: Articulated human pose estimation and search in (Almost) unconstrained still images. Technical Report No. 272. ETH Zurich, D-ITET, BIWI (2010)Google Scholar
  9. 9.
    Forczmański, Paweł, Czapiewski, Piotr, Frejlichowski, Dariusz, Okarma, Krzysztof, Hofman, Radosław: Comparing clothing styles by means of computer vision methods. In: Chmielewski, Leszek J., Kozera, Ryszard, Shin, Bok-Suk, Wojciechowski, Konrad (eds.) ICCVG 2014. LNCS, vol. 8671, pp. 203–211. Springer, Heidelberg (2014)Google Scholar
  10. 10.
    Kaufman, L., Rousseeuw, P.: Clustering by means of medoids. North-Holland (1987)Google Scholar
  11. 11.
    Liu, Z., Wang, J., Chen, Q., Lu, G.: Clothing similarity computation based on tlac. Int. J. Cloth. Sci. Technol. 24(4), 273–286 (2012)CrossRefGoogle Scholar
  12. 12.
    Okarma, Krzysztof, Frejlichowski, Dariusz, Czapiewski, Piotr, Forczmański, Paweł, Hofman, Radosław: Similarity estimation of textile materials based on image quality assessment methods. In: Chmielewski, Leszek J., Kozera, Ryszard, Shin, Bok-Suk, Wojciechowski, Konrad (eds.) ICCVG 2014. LNCS, vol. 8671, pp. 478–485. Springer, Heidelberg (2014)Google Scholar
  13. 13.
    Roerdink, J., Meijster, A.: The watershed transform: definitions, algorithms and parallelization strategies. Fundam. Inf. 41, 187–228 IOS Press (2001)Google Scholar
  14. 14.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2001, pp. I-511–I-518. IEEE (2001)Google Scholar
  15. 15.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar
  16. 16.
    Yamada, A., Pickering, M., Jeannin, S., Cieplinski, L., Jens, R.O., Kim, M.: MPEG-7 Visual Part of Experimentation Model Version 9.0—Part 3 Dominant Color. ISO/IEC JTC1/SC29/WG11/N3914 (2001)Google Scholar
  17. 17.
    Zhang, W., Begole, B., Chu, M., Liu, J., and Yee, N.: Real-time clothes comparison based on multi-view vision. In: Second ACM/IEEE International Conference on Distributed Smart Cameras, 2008. ICDSC 2008, pp. 1–10. IEEE. (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Piotr Czapiewski
    • 1
  • Paweł Forczmański
    • 1
  • Krzysztof Okarma
    • 2
  • Dariusz Frejlichowski
    • 1
  • Radosław Hofman
    • 3
  1. 1.Faculty of Computer Science and Information TechnologyWest Pomeranian University of Technology, SzczecinSzczecinPoland
  2. 2.Faculty of Electrical EngineeringWest Pomeranian University of Technology, SzczecinSzczecinPoland
  3. 3.FireFrog Media sp. z o.o.PoznańPoland

Personalised recommendations